
SoK: Automating Kernel Vulnerability Discovery and Exploit
Generation

Anil Kurmus, Andrea Mambretti, Alessandro Sorniotti
IBM Research Europe – Zürich

Vincent Lenders, Damian Pfammatter, Bernhard Tellenbach
armasuisse – Cyber-Defence Campus

Abstract
Operating systems (OS) underpin modern IT infras-

tructure from computers, to smartphones and cloud
servers. The OS kernels of these systems are central
to their security. Yet their inherent complexity results
in a broad attack surface and frequent vulnerabilities,
often targeted for denial of service, privilege escalation,
or information leakage. While static analysis and fuzzing
tools can detect defects in OS kernels, distinguishing
exploitable vulnerabilities from benign bugs typically
requires manual exploit development, a process that
remains labor-intensive. Over the past three decades,
attackers have increasingly automated parts of this pro-
cess, culminating in recent advances in automated exploit
generation (AEG) powered by program analysis tech-
niques such as symbolic execution. However, applying
these techniques to large complex systems such as OS
kernels continues to be challenging. This paper sheds
light on the main reasons why it remains challenging to
automate exploit generation in OS kernels. We system-
atize the current knowledge of attacks against kernels in
categories, going beyond memory corruption attacks, as
well as the relevant threat models and tools used. We
categorize existing work along this model to show that
gaps exist in many areas. Our analysis helps us identify
open problems, in particular the lack of reproducibility
across different kernel versions due to the large code base
and changing APIs which renders comparisons between
different papers difficult. Finally, we propose a set of
recommendations for future work in this area.

1 Introduction

Bug exploitation is a widespread and effective way for
attackers to compromise software systems. By leverag-
ing one or more bugs, attackers are able to circumvent
deployed security mechanisms, and obtain unauthorized
control over a system. Reliable exploits are highly valu-
able, often traded on the black market due to their po-

tential to covertly compromise high-value targets [72],
fueling an entire underground industry focused on vul-
nerability discovery and weaponization [3, 5, 29]. Widely
used operating systems such as Linux and Windows
are one of the favorite targets for attackers, due to the
high privilege and access these systems have. Operat-
ing systems are vulnerable to a variety of vulnerability
classes and offer a large attack surface because of their
complexity [4, 52].

While some works focus on the discovery and deploy-
ment of defense mechanisms, others deal with the offen-
sive side, thereby attempting to understand strategies
to find vulnerabilities as well as to exploit them. The
rationale of the latter type of effort is that public dis-
course over attackers’ strategies or trends supports the
preemptive creation of adequate defenses.

The typical starting point of an offensive security an-
alyst is the discovery of a bug – a defect in which a
system responds in a way that was neither foreseen nor
intended by the developer. Empirical evidence shows
that the process of discovering bugs can be made effi-
cient through various methods such as static analysis or
fuzz testing. Bug discovery may therefore be considered
as cheap and fast – systems such as syzbot [2] can be
efficiently instantiated on commodity hardware and run
continuously in a daily search for new bugs. This step
can be efficiently automated, as evidenced once again
by the syzkaller architecture which employs at its core
syzbot, which is an automated fuzz testing framework
for the Linux kernel.

Not all bugs have a security impact, and understand-
ing whether a bug is a vulnerability involves further
steps. The next step requires converting this bug into
an exploit that forces the system into behaving in a spe-
cific, attacker-chosen manner (e.g., elevate the privileges
of an unprivileged, attacker-controlled process). This is
hard to automate and typically requires a high degree of
skilled labour to achieve, which makes it an expensive
and intrinsically complex task.



Attempts to achieve Automated Exploit Generation
(AEG) started with simple and small user-space pro-
grams [8,38,39,82]. These techniques are helpful to (i)
quickly analyze large numbers of detected bugs; (ii) pri-
oritize fixes for a set of bugs; (iii) remove the exploitation
vectors that are easiest to detect, thus increasing the
cost of exploitation; (iv) test the effectiveness of new
security mechanisms.

Albeit challenging, AEG for the Linux kernel consti-
tutes a very powerful asset, given the importance of this
component. Therefore, understanding where we stand as
community and which future direction and open prob-
lems we need to take into account in researching this
area is paramount to progress in the right direction for
kernel AEG.

In this paper, we shed light on the main reasons why
automating the exploitation of OS kernel bugs remains
challenging. We systematize the current knowledge on
attacks against OS kernels into categories, going beyond
memory corruption attacks, as well as the relevant threat
models, and the tools used. We consider all the body of
work that directly, or indirectly, has contributed one or
more steps towards achieving AEG for the Linux ker-
nel in the past 12 years. We categorize existing work
along this model, to show that gaps exist in many areas.
Our analysis helps us identify open problems and recom-
mendations: (i) lack of consideration of non-local threat
models, (ii) possible improvements to AEG-inspired bug
prioritization approaches, (iii) less-explored AEG vulner-
ability classes, (iv) lack of portability and reproducibility
across different kernel versions due to the large code base
and changing APIs which renders comparisons between
different papers difficult, (v) ethical considerations for
AEG research, and (vi) possible improvements to AEG
evaluations.

The rest of this paper is organized as follows: In Sec-
tion 2, we present background and systematize aspects
of kernel exploitation that are relevant. In Section 3, we
outline the generic steps required to achieve automated
kernel exploitation that we use to classify previous work
and their relation to automated kernel exploit generation
(AKEG). In Section 4, we survey papers in the area of
automated kernel exploitation, and more broadly auto-
mated vulnerability finding techniques, as well as new
exploitation technique for OS kernels. In Section 5, we
discuss the gaps in current AKEG research, our recom-
mendations, and possible future directions.

2 Kernel exploitation

Below we introduce definitions that are used throughout
this paper, including many definitions commonly used
in OS security. We delineate first the system model in
which we consider the kernel, then the various attacker (or

threat) models within which kernel security is considered,
and finally, what the various attacker (and therefore
security) goals are.

2.1 System model and definitions
This paper focuses on modern commodity OS kernels
and in particular the Linux kernel. This is because Linux
is the target of most of the works we surveyed in this
area. It is widely used in industry as well as academia
as a target for vulnerability discovery and exploitation
projects, because it benefits from being open-source, is
widely used in practice on mobile or as part of cloud
servers, and has a wide range of high quality program
analysis and vulnerability discovery tools available, mak-
ing it easier to build upon them. Nevertheless, much
of the research in this area is also applicable to other
modern monolithic OS kernels such as Windows, OS X,
iOS, or FreeBSD. We describe here a model of the Linux
kernel, defining various concepts and components used
throughout this paper and in the literature.

Figure 1 depicts major components of the Linux ker-
nel and the entities it interacts with. User processes are
processes that run in userspace, an area of memory that
is considered unprivileged by the CPU. This means the
CPU restricts access to certain privileged instructions,
but also to kernelspace memory, dedicated to the kernel.
User processes typically interact with the kernel via sys-
tem calls, an API provided by the kernel to user programs
and allowing the kernel to enforce isolation and other
security policies. Modern OSes are multi-user systems,
with isolation between different user programs and some
user programs having distinct privileges. These privileges
can be implemented in a myriad of ways, including via
discretionary access control on special files, mandatory
access control via LSM security modules that specify
applicable security policies, and Linux capabilities that
are assigned to certain programs or users, allowing access
to certain system calls (or certain features of a system
call). In particular, user programs can run sandboxed,
meaning that they only have access to a restricted set
of system calls. The extent of this access depends on
the mechanism and policy that is applied in the sand-
box. A plethora of such mechanisms exist for Linux,
for example seccomp [1], SELinux/AppArmor [69], and
language-based isolation solutions such as JavaScript in
browsers, or even software-based isolation (SFI) solutions
such as NaCL [96]. Another popular way of running user
programs is via containers. A container uses the kernel’s
namespacing feature, such that a set of processes (i.e.,
a container) sees one set of resources only, those in its
namespace, thereby providing isolation. The Linux ker-
nel has also adopted non-monolithic features over the
years, namely loadable kernel modules (LKMs) and a



S
y
s
t
e
m
 
c
a
l
l
 
I
n
t
e
r
f
a
c
e

H
a
r
d
w
a
r
e
 
I
n
t
e
r
f
a
c
e
 

(
e
.
g
.
,
N
e
t
w
o
r
k
)

Memory

CPU
UNPRIVILEGED PRIVILEGED

KERNELSPACEUSERSPACE

Containerized

Program

Local

Program 

Kernel Core

Kernel

Module

Kernel

Module

eBPF

Program

Lockdown 

Sandboxed

Program

Root-only

Figure 1: Representation of the Linux kernel components and its security boundaries. The programs running in userspace can
be local, sandboxed, or containerized. They interface with the core kernel through the system call interface. These processes can
directly access userspace memory, which is segregated from kernelspace memory. Their access of the CPU functionalities is also
limited due to the CPU unprivileged mode they are run with. The system call interface is the gateway to access privileged
functionalities, and one of the most common ways for attackers to leverage kernel vulnerabilities. The network interface is
another important attack surface exposed from the kernel which is used for remote attacks. Similarly, any hardware device that
can be under attacker control exposes a new kernel attack surface. Most kernel functionalities are exposed to the regular user
through the system call interface, while few are only accessible for the administration user (a.k.a. root). Modern kernels also
supports a lockdown mode that can restrict the administrator whenever they cannot be fully trusted, for example by removing
access to functionalities allowing kernel-modifications like kexec.

kernel sandbox (eBPF). LKMs run with the same kernel
privileges as the core kernel code, but can be loaded at
runtime, possibly on-demand, i.e., when a system call
requires it. Loading an arbitrary LKM is always a priv-
ileged operation. eBPF code on the other hand runs
in a virtual machine, with limited access to the kernel
API and features. Arbitrary eBPF code can be loaded
by unprivileged users (when the unprivileged eBPF ker-
nel configuration is enabled): a verifier ensures that the
eBPF code is well-formed, checking in particular that all
accesses are memory-safe, before loading and running it.
Finally, the kernel also interacts with hardware devices,
typically via interrupts and memory-mapped I/O. In
particular, network packets, bluetooth and WiFi pack-
ets, are partially processed by the kernel before being
delivered either to the device for sending the packet, or
the user process responsible with receiving the packet.

Additionally, we use definitions for bugs (or defects),
vulnerabilities, primitives, and exploits in line with exist-
ing literature [7, 27, 52, 79]. A bug is any deviation from
the programmer-intended behavior. A vulnerability is a
bug that can manifest a security consequence (in a given

attacker model and for a given attacker goal). An exploit
is a program that leverages one or more vulnerabilities
to achieve an attacker goal. In practice, multiple bugs
may need to be combined for an exploit. For example, it
is common that a buffer overflow vulnerability may need
to be combined with an information leakage vulnerabil-
ity for an attacker to obtain arbitrary code execution.
We therefore also use the term potential vulnerability to
refer to bugs that may have a security consequence when
combined (or by themselves), and further elaborate on
such vulnerabilities in Section 3.3. Finally, a primitive
is an abstraction corresponding to a functional aspect
of an exploit; it corresponds to a common capability or
mode of operation attackers will be using across different
exploits. For example, attackers refer to a control-flow
hijacking, an unlinking or a write-what-where primitive.

2.2 Attacker models
The user-kernel boundary discussed above is a central
security boundary in modern operating systems. Kernel
code has privileged access to the underlying hardware,



and mediates accesses from userspace mainly via system
calls. It thereby ensures isolation and fair sharing of
resources between different security domains residing in
userspace, traditionally processes running under different
user IDs. To bypass this isolation guarantees, userspace
attackers may attempt to abuse the user-kernel bound-
ary by typically issuing a sequence of malicious system
calls, i.e., a local exploit. A pure remote exploit abuses
external interfaces of the kernel, such as vulnerabilities
in network packet parsing. The most commonly used
attacker model for kernel exploitation is usually the local
attacker model, for local exploits, whereby the attacker
has access to unprivileged system calls, with full con-
trol over their parameters, in any possible sequence, and
with turing complete computation capability in between
these system calls. Most papers on kernel exploitation
and defenses assume this attacker, either implicitly or
explicitly. Modern OSes have however many attacker
models that are relevant in practice with respect to the
kernel, which we describe here.

• Local: Corresponds to an attacker that has access
to the system as an unprivileged user and has the
ability to interact with the kernel through the system
call interface in an unrestricted manner.

• Local/User sandbox: A specific case of the local
attacker, that corresponds to a sandboxed userspace
attacker, i.e., an attacker that has strictly less entry
points to the kernel than in the typical local attacker
model.

• Local/Container: Corresponds to a local attacker
in an (unprivileged) container. This is different from
the Sandbox attacker, as additional kernel function-
ality required for containers does open additional
kernel attack surface. In particular, namespaces are
a Linux kernel feature that allows for partitioning
of resources for one or multiple processes. Because
such namespacing allows operations traditionally
not available to unprivileged users, such as mount-
ing certain filesystems or creating network interfaces,
it can open additional kernel attack surface when
compared to a local attacker.

• Remote: Corresponds to a network attacker with
no ability to run code on the target machine. For ex-
ample: internet attackers that target vulnerabilities
in the kernel’s TCP/IP stack, LAN attackers that
target physical or link layer vulnerabilities, or close
proximity attackers targeting WiFi or Bluetooth
vulnerabilities.

• Kernel sandbox (eBPF): Corresponds to an at-
tacker with the ability to load sandboxed code of

their choosing into the kernel. In some configura-
tions, the Linux kernel allows unprivileged users to
load eBPF code, opening it to a different attacker
model.

• Lockdown: Corresponds to a privileged attacker
(root) that aims to subvert the kernel and therefore
bypass Lockdown [68] restrictions, for example to
establish persistence across reboots in the context
of Secureboot. Indeed, the Linux kernel provides
a Lockdown mode to this effect that introduces a
security boundary between root and kernel privi-
leges: under this setting, the administrator (root) is
prohibited to execute operations that would subvert
the kernel, such as loading kernel modules or exe-
cuting the kexec system call (which allows to load
and run a new kernel).

• Physical: Corresponds to an attacker with physi-
cal access to the target machine, and equipped to
perform attacks on the hardware. For example, the
attacker may attempt glitching attacks, or use EM-
based side channels. We include this attacker model
solely for completeness, as the Linux kernel does not
attempt to prevent such attacks.

2.3 Attacker goals
The attacker’s goal can be formulated as a violation of
the kernel’s confidentiality, integrity or availability guar-
antees. This can be via privilege escalation (PE), that
is obtaining greater privileges than granted, violating
confidentiality, integrity and/or availability; information
leakage (IL), that is, obtaining secret information, vio-
lating confidentiality; or denial of service (DoS), that is
rendering the system temporarily or permanently inop-
erable, violating availability or fairness.

Many kernel exploits target privilege escalation, which
is typically done either by gaining arbitrary code exe-
cution in kernel context, or gaining arbitrary read and
write capability, allowing to grant the local attacker ad-
ministrative privileges.

3 End-to-end AKEG

We develop in this section a common language to cluster,
compare and identify gaps in existing literature around
achieving end-to-end automated kernel exploit generation
(AKEG).

3.1 Exploitation steps
We divide as follows the steps an attacker may take in
crafting an exploit. The steps correspond well to different
stages needed for end-to-end AKEG.



S1 - Find Vulnerability
[90] [63] [66] [85] [30] [94] [88] [101] [62] [11]
[99] [28] [64] [100] [75] [76] [41] [48] [43] [13]

S2 - Trigger Vulnerability
[90] [75] [76] [41]

[48] [43] [13]

S3 - Understand Vulnerability
Capability

[90] [76] [41] [58] [102] [93] [19] [17]

S4 - Formulate Goal and
Exploitation Strategy

[81] [93] [19] [92] [18] [87] [57] [9]

S5 - Generate End-to-End Exploit
[81] [92] [17] [57]

Figure 2: In this figure, we represent the exploitation steps. For each stage, we reference the surveyed papers that worked to
automate it.

S1 Find vulnerability: The first step is to find a
(potential) vulnerability in the kernel, that is a bug
with potential security impact.

S2 Trigger vulnerability: At this step, the attacker
finds an input and path starting from a kernel en-
try point that reaches the vulnerability. The entry
points depend on the attacker model, it may for
instance be via the system call interface. This, and
the previous step, are often achieved via the use
of a fuzzer which produces a reproducer capable of
triggering the vulnerable code. Static analysis, or
manual code analysis, can also be performed to find
vulnerabilities, but extra effort must be made to
verify the code is reachable by the attacker, and
false positives due to the code not being reachable
in the relevant threat model are possible.

S3 Understand vulnerability capability: At this
step, the attacker infers the full potential of the
vulnerability. This means not only the vulnerability
class (such as buffer overflow), but also all aspects
that are controllable by the attacker (such as how
many bytes can be written beyond buffer bounds,
and whether those byte values are controlled by the
attacker). This is traditionally done manually as it
often requires deep understanding of the code base,
but sanitizers and symbolic execution engines can
automate this process.

S4 Formulate goal and exploitation strategy: At
this step, the attacker needs to find an exploitation
strategy to achieve the desired goal. This may re-
quire using helper exploitation techniques such as
heap massaging (e.g., [77, 91]), or bypassing mitiga-
tions such as KASLR (e.g., [34]), potentially requir-
ing additional vulnerabilities. In other words, the
general idea of this step is to match the vulnerabil-
ity capability with a target goal, possibly via one

or more intermediate steps, which themselves may
involve other vulnerabilities.

S5 Generate end-to-end exploit: The last step is
to put the previous steps from S2 to S4 together in
one program, an exploit, that achieves the attacker
goal when executed.

In our analysis, we find that all but trivial exploits
require these steps for automation. For trivial exploits
such as aiming for a local denial-of-service with a mem-
ory corruption vulnerability, it would not require the
exploitation-related steps S3, S4, and S5 given that the
outcome of S2 may already achieve the attacker’s goal
(in this case, crashing the kernel). Figure 2 represents
the sequence of stages described, and for every step, it
reports the corresponding surveyed papers. In Section 4,
we provide a detailed description of the paper selection
process.

3.2 Defining automation
To classify and survey the work in this area, we define
here what is meant by automation. This definition de-
pends on each of the Si steps, and we can represent each
by a program taking an input and producing an output.
We detail now what these inputs and outputs are.

For S1, this means a program that takes as input a
program (the kernel or part of the kernel), and outputs
a set of bugs. For S2, the input is a bug, and the output
a kernel input for the attacker model (e.g., a sequence
of system calls in the local attacker model) that triggers
the vulnerability when executed. For S3, taking a vul-
nerability and trigger as input, we output characteristics
of the vulnerability. Characteristics depend on the vul-
nerability class: for instance, for spatial memory safety
vulnerabilities, the attacker would like to know what
parts of the input are attacker-controlled, how many



bytes can be written or read out-of-bounds and at which
address. For S4, taking the attacker goal, vulnerability
and its characteristics, we output a kernel input (e.g.,
a sequence of system calls) that either puts the kernel
in an exploitable state or produces crucial information
needed in an exploit. This step may need to invoke itself
S1-S5 for another type of vulnerability, for example, for
defeating KASLR, which would typically be part of S4
for a memory corruption vulnerability aiming to gain
privilege escalation, the attacker may additionally per-
form S1-S5 to find and exploit a kernel information leak.
For S5, taking all previous outputs, we output a program
that achieves the attacker’s goal when executed. Note
that the input space we specify here for each program is
a superset, i.e., automation approaches do not need to
handle all possible classes of input at once, but may focus
on a non-trivial subset. Similarly, they may fail to pro-
duce an output in some cases for those elements in their
input set, or their output may contain errors, e.g., the
fact that an output is not automatically produced does
not imply that it cannot be done by another approach.
For example, for static analysis tools (S1), this remark
concerning input and output sets can be reformulated
as soundness, i.e., the ability of finding a bug if it exists,
and completeness, i.e., if a bug is identified then it is a
real one [73].

BASE

ALGO MEM CRYPT TEA LOGIC

TM SP AC HW

HEAP

STACK

HEAP

STACK

Figure 3: This diagram represents the class of the base
vulnerabilities identified for the Linux kernel. A base vul-
nerability can be caused by an algorithm issue (ALGO), a
memory issue (MEM), a crypto issue (CRYPT), a transient
execution attack (TEA), or a logic issue (LOGIC). The MEM
class can be caused by a temporal (TM) or a spatial (SP)
violation, either on the stack or on the heap.

3.3 Vulnerability classes
A 2011 analysis of Linux kernel vulnerabilities shows
that a large class of vulnerabilities are memory safety-
related [15]. Recent research shows that while this trend
remains, there are new related-classes of attacks [12]. We
propose three meta-classes of vulnerabilities to combine
existing taxonomies for memory safety vulnerabilities

as well as other typical vulnerabilities identified in the
Linux kernel in a structured way: base vulnerabilities,
precursor vulnerabilities and helper vulnerabilities. We
make this distinction based on our analysis of vulnerabil-
ities, and rely on two main observations: some classes of
vulnerabilities may need to lead to another vulnerability
class in order to be exploitable, and some vulnerabili-
ties are not sufficient by themselves for the attacker to
reach its goal, but require to be combined with other
vulnerabilities.

Base Vulnerabilities Vulnerabilities in this class have
the potential to allow the attacker to directly achieve
its goal without needing additional vulnerabilities. Al-
though they may still require additional base or helper
vulnerabilities in some cases, for example to bypass mit-
igations, the vulnerability class can be sufficient for the
attacker to achieve its goal. In fact, these types of vul-
nerabilities provide a fundamental primitive to attackers,
in the sense that often other vulnerabilities are used
to obtain such a primitive. Figure 3 shows the vari-
ous categories of vulnerabilities in this class. One of
the main categories of such vulnerabilities are memory
safety vulnerabilities (BASE-MEM), which can lead to
privilege escalation, information leakage, or denial of
service. The general idea is for the attacker to obtain
the capability of reading or writing arbitrary data at
arbitrary kernel addresses. These are subdivided into
temporal (BASE-MEM-TM) and spatial (BASE-MEM-
SP) issues depending on whether a pointer is dangling or
out-of-bounds [79], and can also be classified depending
on the data structure, e.g., heap or stack vulnerabilities.
For example, a prominent class of vulnerabilities often
leading to privilege escalation in the Linux kernel are use-
after-free vulnerabilities [20], a type of temporal memory
safety vulnerability on the kernel heap (BASE-MEM-
TM-HEAP). Other categories of base vulnerabilities are
algorithmic vulnerabilities (BASE-ALGO) [25], crypto-
graphic and random number generation vulnerabilities
(BASE-CRYPT) [49], transient execution attacks (BASE-
TEA) [14,43,74,81], and logic vulnerabilities, for instance
missing access control checks (BASE-LOGIC-AC) [40]
or erroneous use of hardware such as CVE-2018-3665
(BASE-LOGIC-HW).

Precursor Vulnerabilities These potential vulner-
abilities may only lead to a security impact via one
of the base vulnerabilities, i.e., their impact can be re-
duced to that of a base vulnerability class. We find
this distinction between precursor and base vulnerabil-
ities to be useful: even if techniques for finding such
vulnerabilities in code bases may be different (e.g., dif-
ferent static analysis approaches), the analysis of their
exploitability can be reduced to that of a base class.



PRE

INT NULL

MUL

ADD/SUB

MUL

ADD/SUB

INITUB CASTLOGIC TAINTRAC PAC PHYS INT MC

DF UAFTT DRAM REF IDXALC

Figure 4: This diagram represents the class of the precursor vulnerabilities. A precursor vulnerability leads to a base
vulnerability, and can be a logic issue (LOGIC), undefined behavior (UB), missing initialization (INIT), race condition (RAC),
missing pointer access control (PAC), hardware-related (PHYS), integer overflow or underflow (INT), type casting errors
(CAST), tainted data (TAINT), or missing return value check (MC).

HELP

LEAK

RNG

CFH

DATA

RAND PHYSMEM TEA RAC AS

DLASLR DRAMMOD BPFPERFPE HEAP ARCH SPEC

Figure 5: This diagram represents the class of helper
vulnerabilities, which are used solely in combination with
other vulnerabilities to achieve the attacker’s goal. These in-
clude attacks on randomization (RAND), privilege escalation
techniques (MEM-PE), heap massaging techniques (MEM-
HEAP), transient execution attacks (TEA), race conditions
exploitation techniques (RAC), attack surface increasing con-
figurations (AS), and hardware attack facilitation techniques
(PHYS)

.

Most undefined behaviors in the C programming lan-
guage fall in this category of potential vulnerabilities.
For example, integer overflows (PRE-INT) typically lead
to memory safety issues: either via reference counting
errors (PRE-INT-REF), leading typically to use-after-
free conditions (BASE-MEM-TM), or via out-of-bounds
indexing (PRE-INT-IDX), and improper size allocations
(PRE-INT-ALC), typically leading to out-of-bounds ac-
cesses (BASE-MEM-SP). Another prominent class of
precursor vulnerability leading to memory safety issues
is missing initialization (PRE-INIT), such as CVE-2010-
3296. Signed integer overflow is undefined behavior in
the C standard (PRE-UB-INT), and this could lead
for instance to the compiler optimising-away important
bounds checks, which itself leads to memory safety is-
sues [70]. Similarly, other undefined behavior, such as
dereferencing of a NULL pointer (PRE-UB-NULL), could
lead to the compiler optimising away crucial checks [23].
Logic precursor vulnerabilities (PRE-LOGIC) broadly

include access control and similar issues that may lead to
one of the base vulnerabilities, such as CVE-2022-0500.
Race conditions can lead to memory safety issues: for
instance concurrent use-after-free [80] (PRE-RAC-UAF,
and time-of-check-to-time-of-use (PRE-RAC-TT) or dou-
ble fetch vulnerabilities [76,85,86,94] (PRE-RAC-DF).
Pointer access control issues (PRE-PAC), also called user
pointer dereference issues, are particularly relevant when
passing pointers accross security boundaries, as is the
case in the system call interface. Indeed, an attacker can
provide a kernel address when a user access is expected,
potentially leading to the kernel overwriting its own
memory while trying to write to userspace, or conversely
leaking memory (BASE-MEM). In fact, such attacks are
one of the earliest form of OS kernel memory corrup-
tion, known since 1972 [6], but are still relevant today
(e.g., CVE-2010-3904, CVE-2010-4258, CVE-2018-20669
and CQUAL [44]). A related issue, type confusion bugs
(PRE-CAST), is more generic and also leads to memory
safety issue (see for instance Uncontained [51]).

Helper Vulnerabilities These potential vulnerabil-
ities may only lead to an attacker achieving its goal
in combination with another vulnerability. For instance
bypasses of kernel exploit mitigations fall into this cate-
gory, such as defeating ASLR (HELP-RAND-ASLR),
but also techniques to massage the heap to bring
the kernel heap into an exploitable state [20] (HELP-
MEM-HEAP), or techniques combining memory safety
with speculative execution attacks [31, 67, 74] (HELP-
TEA). Techniques to improve reliability of race condi-
tion (HELP-RAC) [56, 74], techniques to access addi-
tional kernel attack surface (HELP-AS), and techniques
to enable attacks via the hardware, such as reverse en-
gineering of DRAM banks necessary for Rowhammer
attacks [10,22] or power measurements via the running
average power limit (RAPL) interface for microarchitec-
tural attacks [60].

Note that this meta-class terminology is orthogonal



to that of the commonly used “vulnerability primitive”
terminology in prior works: for instance, a control-flow
hijacking primitive can be obtained via a number of the
base vulnerability classes, but obtaining this primitive
may require a helper vulnerability, and using this prim-
itive to achieve privilege escalation may require other
helper vulnerabilities as well.

4 Analysis of automation techniques

In this section, we analyze automation techniques per-
taining to the exploitation of kernel vulnerabilities in a
broad sense, and identify emerging areas and gaps.

4.1 Methodology

Paper selection We select papers published in promi-
nent academic security venues (see Appendix for the
detailed selection methodology) that automate some as-
pect of exploiting vulnerabilities in the Linux kernel.
Because exploitation of vulnerabilities is closely related
to finding vulnerabilities, we also include relevant papers
that automate the task of finding vulnerabilities, but
distinguish them explicitly, and do not aim to be exhaus-
tive with papers focusing on finding vulnerabilities. In
particular, for static analysis and fuzzing approaches,
we refrain from including them unless they specifically
propose a new approach to find bugs in OS kernels: a
comparison of such tools is outside the scope of this work.
In addition, because many manual approaches include
some amount of automation, for instance a simple static
analysis approach to search for a vulnerable pattern or a
particular data structure, we also include papers that do
not explicitly focus on automation, but present results
on a novel kernel vulnerability class. We refer to the
Appendix for additional details on the selection process.

Evaluation criteria We use the various dimensions
presented in Section 2 in our analysis, inferring the rel-
evant data when the paper does not clearly state the
information, but explicitly stating our inferences. As
shown in Table 1, we also note the publication year,
whether the tool is open-source if an automation tool is
presented, and alternatively whether the attack proof-of-
concept is publicly available if the attack is manual. We
group papers based on whether they focus on vulnera-
bility finding solely, typically via static analysis (S1), on
vulnerability finding with test case, typically via fuzzing
and capability extraction (S1, S2, S3), on automated
exploit generation (S3, S4, S5) or show new important
attack techniques.

4.2 Analysis
We detail below the results of our analysis, with each
paragraph corresponding to a section of Table 1. Table 2
complements this table by showing the vulnerability
classes covered by each tool.

Static analysis Static analysis tools mainly target
the vulnerability finding phase (S1). Although the Linux
kernel is natively compiled with the GCC compiler, most
static analysis tools build on the LLVM compiler frame-
work [53]. This is mainly due to the superior documen-
tation available, as well as the modular architecture of
LLVM that makes writing compiler passes significantly
easier when compared to GCC. One drawback is that,
although great efforts were done to allow the Linux ker-
nel to build with LLVM, only the most recent versions
of the kernel code can be compiled with specific ver-
sions of LLVM, while older versions cannot be compiled
or analyzed easily using it. Beyond that, there may be
security-relevant differences between LLVM and GCC
builds (for example around undefined behavior [54, 89]).
The tools we survey cover a large portion of vulnerability
classes, with DR. CHECKER [66] being one of the earli-
est kernel static analysis papers to cover a wide variety of
vulnerability classes, albeit only in kernel drivers due to
scaling reasons of interprocedural context-sensitive and
flow-sensitive static analysis, which is commonly required
to perform accurate static analysis, i.e., close to being
sound and complete. Unisan [63] is the first of many
checkers detecting uninitialized memory uses [99, 100].
Another class of vulnerabilities well-suited for static anal-
ysis are double fetches [85, 94]. Integer overflows and
related undefined behaviors are detected by KINT [90].

Fuzzing In recent years, fuzzing tools have been ex-
tremely successful in finding bugs, in particular with
Syzkaller for the Linux kernel [83]. They are especially
useful to developers because they generate test cases,
allowing developers to reproduce the defect and debug
it (corresponding to S2). Syzkaller is a coverage-guided,
syscall- and mutation-based Linux kernel fuzzer, that
found more than 3700 bugs in 3 years [71]. A limi-
tation of Syzkaller is its need for syscall descriptions,
that are manually written whenever new features are
added, including for each new driver. The lack of good
syscall descriptions for a feature will result in low cov-
erage. DIFUZE [24], KSG [78], SyzDescribe [37], and
SyzGen++ [16] automate syscall description generation,
all using mainly static analysis with the exception of
SyzGen++. FuzzNG [13] takes an approach that does
not require syscall descriptions, but instead provides spe-
cific handling for important kernel mechanisms such as
pointer accesses and file descriptor usage. kAFL [75] is



W
or

k
Y

ea
r

A
M

A
G

St
ep

s
Fu

zz
Sa

n
SA

SM
T

D
SE

Sr
c

O
S

StaticAnalyzers

K
IN

T
[9

0]
20

12
⋆

⋆
S1

;S
2;

S3
–

–
LL

V
M

B
oo

–
!

Li
U

ni
Sa

n
[6

3]
20

16
⋆

⋆
S1

–
–

LL
V

M
–

–
–

Li
;A

n
D

R
.C

H
E

C
K

E
R

[6
6]

20
17

L
⋆

S1
–

–
LL

V
M

–
–

!
Li

D
ou

bl
eF

et
ch

[8
5]

20
17

L
⋆

S1
–

–
C

oc
c

–
–

!
Li

;A
n;

Fr
K

-M
in

er
[3

0]
20

18
L

⋆
S1

–
–

LL
V

M
–

–
–

Li
D

ea
dl

in
e

[9
4]

20
18

L
⋆

S1
–

–
LL

V
M

Z3
–

–
Li

;F
r

LR
Sa

n
[8

8]
20

18
⋆

⋆
S1

–
–

LL
V

M
–

–
–

Li
Pe

x
[1

01
]

20
19

L
⋆

S1
–

–
LL

V
M

–
–

–
Li

C
R

IX
[6

2]
20

19
⋆

⋆
S1

–
–

LL
V

M
–

–
–

Li
K

A
LD

[1
1]

20
19

L
⋆

S1
–

–
LL

V
M

–
–

–
Li

U
B

IT
ec

t
[9

9]
20

20
⋆

⋆
S1

–
–

LL
V

M
–

K
LE

E
!

Li
K

-M
E

LD
[2

8]
20

21
⋆

D
oS

S1
–

–
LL

V
M

–
–

–
Li

G
os

ha
w

k
[6

4]
20

22
⋆

⋆
S1

–
–

C
SA

Z3
–

!
Li

;F
r

In
cr

eL
ux

[1
00

]
20

22
⋆

⋆
S1

–
–

LL
V

M
–

K
LE

E
!

Li

Fuzzers

kA
FL

[7
5]

20
17

L
⋆

S1
;S

2
O

w
n

K
A

/⋆
–

–
–

!
Li

;W
i;

M
a

D
E

C
A

F
[7

6]
20

18
L

⋆
S1

;S
2;

S3
T

;N
–

–
–

–
–

Li
;W

i
R

A
ZZ

E
R

[4
1]

20
19

L
⋆

S1
;S

2;
S3

Sy
z

K
A

/l
d/

⋆
LL

V
M

–
–

–
Li

H
FL

[4
8]

20
20

L
⋆

S1
;S

2
Sy

z
–/

⋆
L+

G
–

S2
E

!
Li

G
R

E
B

E
[5

8]
20

22
⋆

⋆
S3

Sy
z

–
LL

V
M

–
–

!
Li

Sy
zS

co
pe

[1
02

]
20

22
⋆

⋆
S3

Sy
z

K
A

LL
V

M
–

S+
a

!
Li

K
as

pe
r

[4
3]

20
22

L
IL

S1
;S

2
Sy

z
D

TA
LL

V
M

–
–

!
Li

Fu
zz

N
G

[1
3]

20
23

⋆
⋆

S1
;S

2
O

w
n

–
–

–
–

!
Li

AEG

D
ra

m
m

er
[8

1]
20

16
L

P
E

S4
;S

5
–

–
–

–
–

!
A

n
FU

ZE
[9

3]
20

18
L

⋆
S3

;S
4

Sy
z

K
A

–
!

an
gr

≈
Li

SL
A

K
E

[1
9]

20
19

L
P

E
S3

;S
4

Sy
z;

M
–

L+
G

–
–

!
Li

K
E

P
LE

R
[9

2]
20

19
L

P
E

S4
;S

5
–

–
O

w
n

–
an

gr
!

Li
K

O
O

B
E

[1
7]

20
20

L
P

E
S3

;S
5

Sy
z

K
A

–
K

qu
S2

E
!

Li
E

LO
IS

E
[1

8]
20

20
L

IL
S4

–
–

LL
V

M
Z3

–
–

Li
;F

r;
X

A
lp

ha
E

X
P

[8
7]

20
23

L
P

E
/I

L
S4

Sy
z

–
K

IN
T

;S
f

–
–

–
Li

K
-L

E
A

K
[5

7]
20

24
L

IL
S4

;S
5

Sy
z

K
A

LL
V

M
–

an
gr

!
Li

SC
AV

Y
[9

]
20

24
L

P
E

S4
Sy

z
K

A
LL

V
M

–
–

!
Li

Exp.Tech.

R
et

2d
ir

[4
6]

20
14

L
P

E
–

–
–

–
–

!
Li

P
re

fe
tc

h
[3

3]
20

16
L

IL
–

–
–

–
–

!
Li

;W
i

P
T

-R
an

d
[2

6]
20

17
L

P
E

/I
L

–
–

–
–

–
–

Li
;W

i
B

lin
ds

id
e

[3
1]

20
20

L
IL

–
–

–
–

–
!

Li
E

xp
R

ac
e

[5
6]

20
21

L
P

E
/I

L
–

–
–

–
–

!
≈

Li
P

sp
ra

y
[5

5]
20

23
L

⋆
–

–
–

–
–

!
Li

R
et

Sp
ill

[9
8]

20
23

L
P

E
/I

L
–

–
–

–
an

gr
!

Li
SL

U
B

St
ic

k
[6

5]
20

24
L

P
E

/I
L

–
–

–
–

–
!

Li
G

ho
st

R
ac

e
[7

4]
20

24
L

IL
–

–
C

oc
c

–
–

!
Li

C
A

R
D

SH
A

R
K

[3
6]

20
24

L
an

y
–

–
–

–
–

!
Li

T
ab

le
1:

Su
m

m
ar

y
ta

bl
e

of
th

e
su

rv
ey

.C
ol

um
ns

:A
M

:a
tt

ac
ke

r
m

od
el

,A
G

:a
tt

ac
ke

r
go

al
,S

te
ps

:A
ut

om
at

ed
st

ep
s,

Fu
zz

:F
uz

ze
r,

Sa
n:

Sa
ni

tiz
er

,S
A

:s
ta

tic
an

al
ys

is,
SM

T
:S

M
T

so
lv

er
,D

SE
:d

yn
am

ic
sy

m
bo

lic
ex

ec
ut

io
n,

Sr
c:

so
ur

ce
co

de
av

ai
la

bl
e.

O
th

er
ab

br
ev

ia
tio

ns
:P

E:
pr

iv
ile

ge
es

ca
la

tio
n,

IL
:i

nf
or

m
at

io
n

le
ak

ag
e,

D
oS

:d
en

ia
l

of
se

rv
ic

e,
L:

lo
ca

l,
⋆
:a

ny
,!

:y
es

,–
:n

o,
≈

:p
ar

tia
l,

Sy
z:

sy
zk

al
le

r,
M

:M
oo

ns
hi

ne
,T

:T
rin

ity
,N

:N
tC

al
l6

4
fu

zz
er

,K
A

:K
er

ne
lA

dd
re

ss
Sa

ni
tiz

er
,l

d:
lo

ck
de

p
ra

ce
de

te
ct

io
n,

C
oc

c:
co

cc
in

el
le

,L
+

G
:L

LV
M

an
d

G
C

C
,S

f:
So

uffl
é,

S+
a:

S2
E

an
d

an
gr

,D
TA

:c
us

to
m

dy
na

m
ic

ta
in

t
an

al
ys

is
(u

nd
er

Sa
n

du
e

to
sp

ac
e

co
ns

tr
ai

nt
s)

,K
qu

:
K

qu
er

y,
Li

:L
in

ux
,A

n:
A

nd
ro

id
,W

i:
W

in
do

w
s,

M
a:

M
ac

O
S,

X
:X

N
U

,F
r:

Fr
ee

B
SD

.



in comparison to Syzkaller OS-agnostic, works mostly
at the hypervisor-level, and uses Intel PT for code cov-
erage, but is limited in the achieved coverage as it uses
mostly file-based inputs with a mutation engine simi-
lar to AFL. To extend coverage beyond branches with
hard-constraints, HFL [48] combines fuzzing with sym-
bolic execution. RAZZER [41] and DECAF [76] spe-
cialize in fuzzing concurrency bugs. SyzScope [102] and
GREBE [58] both focus on S3: starting from a fuzzer-
found bug, GREBE uses directed fuzzing and taint anal-
ysis to find other paths leading to the same bug, in an
effort to uncover other potentially more security-relevant
behaviors, as reported by a sanitizer, of the same bug.
SyzScope additionally guides symbolic execution to eval-
uate exploitability.

Attack techniques As a response to the introduction
of several kernel mitigations, multiple papers contain
novel attack techniques, with the goal of demonstrat-
ing the limitations of these mitigations as well as the
security-relevance of a new vulnerability class. Similarly
to user-space attacks, modern OS kernels and architec-
tures prevent execution from user pages while in kernel
mode (SMEP on Intel CPUs) as well as direct dereference
of user pointers while in kernel mode (SMAP on Intel).
Bypassing these mitigations, ret2dir [47] is a technique
to redirect either code execution or data pointer accesses
into a portion of kernel memory that directly maps user
pages into the kernel. PT-Rand [26] demonstrates a
particular data-only attack vector (HELP-MEM) that is
common to all OSes: modifying page table information to
achieve privilege escalation or leaking data. ExpRace [56]
presents a technique to help with the exploitation of con-
current data races, in particular to be able to synchronize
attack and victim threads. Vulnerabilities on the kernel
heap (BASE-MEM-HEAP) are notorious for requiring
tailored exploitation techniques, especially in the pres-
ence of mitigations and when aiming for reliable exploita-
tion. KHeaps [97] studies that reliability, showing that
some known helper techniques (HELP-MEM-HEAP) are
not as effective as expected, and proposes a new tech-
nique to improve exploit reliability. Pspray [55] pro-
poses a side channel to bypass kernel slab randomization
(HELP-MEM-HEAP). RetSpill [98] adapts the pivot-to-
heap ROP technique used as part of some control-flow
hijacking exploits to work with the kernel stack (HELP-
MEM-PE-CFH), thereby achieving greater exploitation
flexibility. SLUBStick [65] proposes a generic cross-cache
attack technique that bypasses many current mitigations
(HELP-MEM-HEAP). Blindside [31] introduces a spec-
ulative probing technique (HELP-TEA), which helps
defeating a wide range of kernel layout randomization
techniques under the assumption of a strong vulnerabil-
ity allowing overwriting specific pointers (BASE-MEM).

Ghostrace [74] combines Spectre [50] branch mispredic-
tion attacks (BASE-TEA) with concurrent use-after-free
(BASE-MEM-TM-HEAP), as well as a novel race condi-
tion exploitation technique (HELP-RAC) showing that
architecturally race-free regions of kernel code can be
exploited speculatively to achieve arbitrary data leak-
age. CARDSHARK [36] helps in timing race condition
exploits by automatically inferring the necessary delay
for succesful exploitation (HELP-RAC).

Automated exploit generation We categorize as
automated exploit generation papers that aim to au-
tomate S4 or S5. KEPLER [92] assumes the attacker
has a control-flow hijacking primitive (i.e., controls
the instruction pointer) and automatically generates
a return-oriented programming (ROP) payload that ei-
ther creates an arbitrary read primitive via invocation
of copy_to_user or arbitrary write via copy_from_user,
achieving partial S4 in our classification. Control-flow-
integrity for the kernel prevents such ROP-based at-
tacks, making data-only exploitation strategies necessary.
ELOISE [18] automatically identifies such data-only ob-
jects whose length field, if corrupted as consequence of
a vulnerability, leads to information leakage from the
kernel (partially S4). KOOBE [17] starts from a fuzzer-
found out-of-bounds heap access, and automates the ca-
pability extraction (S3) as well as solving for exploitabil-
ity in pre-determined cases (partially S4). SLAKE [19]
automates kernel heap manipulation by identifying three
primitives required for kernel primitives: allocation, deal-
location and dereference. It first identifies candidate
objects for each category via static analysis, and uses
fuzzing to generate code for each primitive. Together with
finding the required sequence of allocation and dealloca-
tion, this is used to automatically manipulate the heap
into the required state for exploitation of most kernel
use-after-free vulnerabilities (partial S4). AlphaEXP [87]
creates knowledge graphs related to kernel objects and
functions, with the goal of identifying interesting objects
for memory corruption (HELP-MEM-IL, HELP-MEM-
PE-DATA and HELP-MEM-PE-IL). K-LEAK [57] stat-
ically builds a memory-error-aware data flow graph of
the Linux kernel, harnesses capabilities dynamically via
KASAN reports, identifies potential infoleak strategies
via a search algorithm, and verifies these via symbolic ex-
ecution. SCAVY [9] identifies kernel objects that can be
used as targets of slab memory corruption vulnerabilities,
by using a heavily modified Syzkaller implementation
simulating corruption of interesting fields and testing for
elevated privileges.



Vulnerability class Papers
BASE-MEM (memory safety) DR. CHECKER [66], K-Miner [30], K-LEAK [57]
BASE-MEM-TM (temporal) K-MELD [28]
BASE-MEM-TM-HEAP Goshawk [64], FUZE [93], SLAKE [19]
BASE-MEM-SP (spatial) KOOBE [17], Drammer [81]
BASE-TEA (transient execution) KASPER [43], Ghostrace [74]
BASE-LOGIC-AC (missing access control) Pex [101]
PRE-CAST (type confusion) DR. CHECKER [66]
PRE-INIT (uninit. data) DR. CHECKER [66], UniSan [63], IncreLux [100], UBITect [99]
PRE-INT (integer) KINT [90]
PRE-INT-ALC (allocation count) DR. CHECKER [66]
PRE-INT-IDX (index overflow) DR. CHECKER [66]
PRE-MC (missing check) CRIX [62]
PRE-PHYS-DRAM Drammer [81]
PRE-RAC-TT (TOCTOU) DR. CHECKER [66], LRSan [88]
PRE-RAC-DF (double fetch) DoubleFetch [85], Deadline [94], DECAF [76]
PRE-RAC (race conditon) RAZZER [41]
PRE-TAINT (tainted data) DR. CHECKER [66]
PRE-UB-INT (integer) KINT [90]
HELP-MEM-HEAP (heap manipulation) FUZE [93], SLAKE [19], Pspray [55], SLUBStick [65], SCAVY [9]
HELP-MEM-IL-DATA (data-only infoleak) ELOISE [18], AlphaEXP [87], K-LEAK [57], PT-Rand [26]
HELP-MEM-PE-CFH (control-flow hijack) KEPLER [92], Ret2dir [46], RetSpill [98]
HELP-MEM-PE-DATA (data-only) AlphaEXP [87], PT-Rand [26], Ret2dir [46]
HELP-MEM-RAND-ASLR-LEAK Prefetch [33], KALD [11]
HELP-RAC (race condition) ExpRace [56], Ghostrace [74], CARDSHARK [36]
HELP-RAC-DL (double lock) K-Miner [30]
HELP-TEA (transient execution) Blindside [31]
Agnostic GREBE [58], SyzScope [102], HFL [48], kAFL [75], RAZZER [41], FuzzNG [13]

Table 2: Distribution of surveyed papers for each class of vulnerability. “Agnostic” refers to papers where the vulnerability
class depends on another tool (the chosen sanitizer).

5 Open problems and recommendations

Our systematization identifies a number of gaps around
automated kernel exploitation that could be targeted in
future work, among which: attacker models and goals
tend to only focus on one or two common cases; few vul-
nerability classes are addressed in an end-to-end manner
for AEG; portability and tool reuse and reproducibility
is generally limited.

5.1 Attacker model and goal
The attacker model and goal is paramount for prioritiza-
tion of vulnerabilities. For instance, a system administra-
tor must know in which attacker model a vulnerability
exists in order to evaluate whether their system is af-
fected. The same applies for the attacker goal. In most
papers, such practical considerations are often secondary.
Static analysis papers tackling S1 are usually attacker-
model-agnostic, because they do not consider the reach-

ability of the vulnerable code. This can be beneficial as
it covers any potential attacker model, but also tends to
lead to large false positives, making developers less likely
to act on such bugs. In a sense, fuzzing goes further,
and leads one to consider attacker models, given that
reachability of code is conditioned on the harness design.
Table 1 shows that most papers that do have a specific
attacker model focus on the local attacker model. This is
reasonable, as it constitutes the most common practical
attacker situation, as well as one of the largest attack
surface for the kernel [52]. Nevertheless, other attacker
models, as shown in Section 2.2, are also relevant from
a practical standpoint. This indicates that there is a
gap in other attacker models such as the kernel sandbox,
kernel secure boot or remote attacker models, with the
potential of many undiscovered bugs in the correspond-
ing attack surface, as well as novel exploitation strategies
and automated exploit generation approaches. Similarly,
most approaches focus on PE or IL as the attacker goal.
While these two represent the most impactful attacks,



DoS attacks, especially in remote scenarios, may also
have significant practical impact (e.g., CVE-2019-11477).
Only one paper explores this area [28], and only in a
local setting, making it a potential area for future work.

5.2 Bug prioritization beyond path ex-
ploration

Generally, any AEG technique demonstrating exploitabil-
ity of a bug (e.g., [17,57,87]) helps in prioritizing bugs, as
they clearly demonstrate practical security impact. Nev-
ertheless, because AEG approaches are still limited to
specific vulnerability classes, this cannot be used widely
across all bugs: the inability of an AEG tool to gener-
ate an exploit does not imply that the bug is of lower
priority, as the bug may still be exploitable with a dif-
ferent approach. Approaches that consider exploitability
considerations beyond reachability lead to wider bug
prioritization: this is the explicit motivation for SyzS-
cope and GREBE [58, 102], which both explore other
paths leading to the same defect, with the idea that some
other paths may lead to stronger attacker capability, and
therefore higher priority. While they do not demonstrate
exploitability, the hint they give to developers with re-
spect to the bug’s capability is more accurate than what
a standalone sanitizer can indicate. However, we note
that bug prioritization also requires exploring other as-
pects, and not only other paths that may lead to the
same bug. First, the assumed attacker model impacts a
bug’s practical impact: a remote attacker model should
get the higher priority, whereas an attack requiring ad-
ministrative privileges (for example in the Lockdown
attacker model in Section 2.2) is a much lower priority.
This consideration is not theoretic: Syzkaller is run with
administrative privileges, to allow it to achieve as high
of a code coverage as possible. This means that it also
reports defects that are not reachable in the typical local
threat model. Bug prioritization in precise threat models
is therefore a large area where further research is needed.
Second, the category of bug reported by the sanitizer,
such as a stack-based buffer overflow, does not necessar-
ily imply exploitability, and AEG techniques could help
in the future in obtaining a more accurate prioritization,
for instance in cases where such a buffer-overflow may
not be exploitable due to mitigations.

5.3 Vulnerability classes
While Table 1 and Table 2 show that most vulnera-
bility classes are covered, some remain to be tackled,
in particular with respect to automated exploit genera-
tion techniques. For example, no automated exploitation
technique exists for Spectre-type of kernel vulnerabilities.
Given that the exploitation (and exploitability evalua-

tion) of such bugs is difficult, this could be an important
area of future work. Similarly, Blindside [31] showed that
spectre v1-like attacks can be used to help finding an ex-
ploit strategy in the presence of mitigations: automating
such approaches could be tackled in future work. Another
example is with respect to race conditions (PRE-RAC
and HELP-RAC), which have not yet been used in the
kernel AEG context. In part, this remains challenging
because the widely used S2E [21] engine does not support
multiple-CPU symbolic execution. For the exploitation
of heap vulnerabilities (HELP-MEM-HEAP), while we
only mention one technique, there is an abundance of
recent techniques with each a different area of applica-
bility [35, 59, 61, 95], depending on the vulnerability and
mitigations. In general, while S1 and S2 (and sometimes
S3) cover a wide range of vulnerability classes, only few
S4 and S5 tools cover a wide range of vulnerability classes.
This intuitively makes sense: end-to-end automation of
exploitation requires making greater assumptions about
the specific vulnerability type, the kernel version and
the available mitigations.

5.4 Portability
Most automation techniques still heavily rely on tem-
plates or domain specific knowledge included in the par-
ticular tool. This means that their portability, whether
it is across Linux versions or across different operating
systems, is low. Combined with versioning limitations as
well as API changes for dependencies such as S2E and
LLVM, their portability is highly limited and requires
very significant engineering work. One possible solution
would be to automate porting of exploits across differ-
ent kernel versions, as proposed by AEM [42]. However,
this technique only works for a subset of exploits and
kernel version, as more complex kernel changes cannot
be handled. Beyond being a practical problem for wider
adoption, lack of portability causes significant issues in
research: reproducibility problems, making comparisons
with prior work particularly difficult. For example, two
AEG solutions may only work on two distinct kernel
versions, making it particularly challenging to evaluate
differences. A possible solution to this problem would
be to fix a kernel version for all studies, by analogy with
biology research, where studies are conducted on model
organisms such as C. elegans [45]. These organisms are
chosen and bred to be highly similar to one other. This
leads to our recommendation in favor of the community
agreeing on a fixed Linux kernel version for reproducibil-
ity and comparison purposes, for example one of the
long-term support (LTS) kernel releases, which could
be referred to as a long-term research (LTR) version.
While this would lead to research being performed on
“outdated” LTR kernels in the long run, we argue this



is largely a problem from the practical industry adop-
tion perspective, a task that would in any case require
large amount of additional work, even when working
with the latest kernel version. However, this would have
tremendous benefits for research, allowing us to compare
different approaches in an accurate manner, but also
drastically reducing the amount of extraneous engineer-
ing required for reusing research artifacts when versions
differ. If the community stands behind this idea, defenses
would also be developed for this LTR version, making
it easier to evaluate and compare them. Therefore, we
argue the benefits of the systems community at large fix-
ing a research kernel version for multiple years outweighs
its drawbacks.

5.5 Tooling, reuse and reproducibility

In total, among vulnerability-finding papers, we survey
14 papers with static analysis as main tooling, and 8
papers using fuzzing as core technique. For exploitation-
oriented papers, we identify 10 manual exploitation tech-
nique papers, and 9 papers that do automated exploit
generation. Some tools are used across many papers, such
as Syzkaller for fuzzing, LLVM for static analysis, and, to
a lesser extent, S2E and angr [84] for dynamic symbolic
execution. This is highly positive for these tools, as it is
a testimony to their robustness and usability. Neverthe-
less, many approaches could benefit from increased code
reuse. For example, many different papers reimplement
passes to acquire a precise kernel control flow graph.
Similarly, papers using S2E for the kernel often end up
re-implementing a number of helper tooling that is sim-
ilar but not robust enough to be reused across papers.
Finally, we notice that while many of the approaches
could be combined to achieve better results (for example,
KOOBE [17] could be combined with SLAKE [19] to also
automate heap manipulation), doing so would be very
difficult as the code bases are largely incompatible. This
could call for a modular framework that would make
such approaches easier, akin to how LLVM made writing
compiler passes easier and more modular, and result in
end-to-end exploit generation results, which is currently
lacking with each paper focusing on demonstrating fea-
sibility for a small part of the problem. Finally, we note
that a number of papers do not have source code avail-
able, making reproducibility very difficult. However, we
notice that papers published in the past few years do
have code available, which can likely be attributed to
the recent changes in conference policies with respect to
artifact availability.

5.6 Ethics of AEG
A common concern is around the ethics of automated
exploit generation work: it can be argued that this re-
search makes the attacker’s work easier, and therefore
increases workload for defenders. Conversely, one can
argue that such research makes it possible to better
prioritize bug fixing, targetting first exploitable vulnera-
bilities and leaving only hard to exploit vulnerabilities
to attackers. It can also be argued that it makes it easier
to systematically evaluate defenses. We believe the cru-
cial differentiator in tipping the balance towards more
benefits than harm is in whether AEG research is done
publicly. Public AEG research, just like public research
on advanced exploitation techniques, improves defender’s
understanding on what attacks are feasible and automat-
able, which eventually leads to more robust defenses.
Therefore, we recommend to encourage public AEG re-
search, while still ensuring that typical offensive security
ethical boundaries are satisfied: for example, ensuring
that any exploits generated and published as part of the
work target bugs that do have fixes, or where maintainers
have been notified well in advance.

5.7 Improving AEG evaluations
Although most AEG papers do discuss limitations of
their approach, we notice that this is typically not ex-
perimentally evaluated in a measurable way. A recent
trend is to evaluate against Google’s kernelCTF [32],
which provides instances for attackers to demonstrate
their exploit, including an instance containing known
vulnerabilities to demonstrate mitigation bypasses. How-
ever, this only provides anecdotal evidence related to the
vulnerabilities (and mitigations) available on the chosen
instance. We foresee two possibilities for tackling this
issue. The first one, commonly used in other areas, is
to establish a benchmark dataset: this could be based
on exploits from kernelCTF1, or a set of bugs identified
by a fuzzer, all corresponding to the vulnerability class
targeted for the particular AEG approach, with exploits
available as ground truth for exploitability. Currently,
each paper selects its own set of bugs, making it likely
that the dataset is biased, and making comparisons dif-
ficult. However, this approach is difficult to implement:
given that many AEG papers are the first to tackle a
particular class of vulnerability, no relevant benchmark
dataset exists, and a new one needs to be created. An
alternative would be to evaluate on a set of bugs selected
in a provably random manner, for example the top N
bugs by git commit id that correspond to the required
vulnerability class and attacker model. Beyond enabling

1https://github.com/google/security-research/tree/
master/pocs/linux/kernelctf

https://github.com/google/security-research/tree/master/pocs/linux/kernelctf
https://github.com/google/security-research/tree/master/pocs/linux/kernelctf


fair comparisons, where future work can demonstrate
improvements in a measurable way, this would also give
an idea with respect to the proportion of bugs where an
exploit can be generated.

6 Conclusion

We systematize knowledge from past work concerning
the automation of vulnerability discovery and exploit
generation on the Linux kernel. The pervasiveness of
deployments of OS kernels such as Linux, with their
large attack surface and high privilege level, make a very
appealing target for adversaries and therefore a critical
component whose security must be very well understood,
thus justifying a more thorough analysis of the works in
this space. We first systematize the concepts pertaining
to kernel exploitation, defining realistic threat models
and attacker goals. We break down the steps involved
in exploitation of a kernel vulnerability and present the
techniques that are leveraged to automate any of these
steps. We then proceed to organize the papers in the
literature across several dimensions, including to what
extent they adopt any of the automation techniques, in
which way they do so, whether they are able to combine
them and which vulnerabilities they focus on. After the
systematization, we highlight a set of open research prob-
lems, which we hope will foster discussion and research
on the challenging topic of automatic kernel exploit gen-
eration.

Acknowledgments

The authors would like to thank our shepherd Kyle Zeng,
and anonymous reviewers for their comments on an ear-
lier draft of this paper.

References

[1] Seccomp(2) - Linux manual
page. https://man7.org/linux/man-
pages/man2/seccomp.2.html.

[2] Syzbot. https://syzkaller.appspot.com/upstream.

[3] Zerodium exploit bounty program. https://
zerodium.com/program.html, 2024. [Online; ac-
cessed 06-Jun-2023].

[4] R. Abbott, J. Chin, Jed Donnelley, W. Konigs-
ford, S. Tokubo, and D. Webb. Security analysis
and enhancements of computer operating systems.
page 70, 04 1976.

[5] Lillian Ablon, Martin C Libicki, and Andrea A
Golay. Markets for cybercrime tools and stolen
data: Hackers’ bazaar. Rand Corporation, 2014.

[6] James P Anderson et al. Computer security tech-
nology planning study. Technical report, Citeseer,
1972.

[7] Ross J Anderson. Security engineering: a guide
to building dependable distributed systems. John
Wiley & Sons, 2010.

[8] Thanassis Avgerinos, Sang Kil Cha, Alexandre Re-
bert, Edward J Schwartz, Maverick Woo, and David
Brumley. Automatic exploit generation. Commu-
nications of the ACM, 57(2):74–84, 2014.

[9] Erin Avllazagaj, Yonghwi Kwon, and Tudor Du-
mitras. SCAVY: Automated discovery of memory
corruption targets in linux kernel for privilege es-
calation. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 7141–7158, Philadel-
phia, PA, August 2024. USENIX Association.

[10] Alessandro Barenghi, Luca Breveglieri, Niccolò
Izzo, and Gerardo Pelosi. Software-only reverse
engineering of physical dram mappings for rowham-
mer attacks. In 2018 IEEE 3rd International Ver-
ification and Security Workshop (IVSW), pages
19–24. IEEE, 2018.

[11] Brian Belleville, Wenbo Shen, Stijn Volckaert,
Ahmed M. Azab, and Michael Franz. Kald: Detect-
ing direct pointer disclosure vulnerabilities. IEEE
Transactions on Dependable and Secure Comput-
ing, 18(3):1369–1377, 2021.

[12] Herbert Bos. Corruption of Memory: Those
who don’t know history are doomed to repeat it.
Keynote at NDSS’24, 2024.

[13] Alexander Bulekov, Bandan Das, Stefan Hajnoczi,
and Manuel Egele. No grammar, no problem: To-
wards fuzzing the linux kernel without system-call
descriptions. In Network and Distributed System
Security (NDSS) Symposium, 2023.

[14] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin Von Berg, Philipp Ortner,
Frank Piessens, Dmitry Evtyushkin, and Daniel
Gruss. A systematic evaluation of transient ex-
ecution attacks and defenses. In 28th USENIX
Security Symposium (USENIX Security 19), pages
249–266, 2019.

[15] Haogang Chen, Yandong Mao, Xi Wang, Dong
Zhou, Nickolai Zeldovich, and M Frans Kaashoek.

https://zerodium.com/program.html
https://zerodium.com/program.html


Linux kernel vulnerabilities: State-of-the-art de-
fenses and open problems. In Proceedings of the
Second Asia-Pacific Workshop on Systems, pages
1–5, 2011.

[16] Weiteng Chen, Yu Hao, Zheng Zhang, Xiaochen
Zou, Dhilung Kirat, Shachee Mishra, Douglas
Schales, Jiyong Jang, and Zhiyun Qian. Syz-
Gen++: Dependency inference for augmenting ker-
nel driver fuzzing. In IEEE Symposium on Security
and Privacy, 2024.

[17] Weiteng Chen, Xiaochen Zou, Guoren Li, and
Zhiyun Qian. KOOBE: Towards facilitating ex-
ploit generation of kernel Out-Of-Bounds write
vulnerabilities. In 29th USENIX Security Sym-
posium (USENIX Security 20), pages 1093–1110.
USENIX Association, August 2020.

[18] Yueqi Chen, Zhenpeng Lin, and Xinyu Xing. A sys-
tematic study of elastic objects in kernel exploita-
tion. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Se-
curity, CCS ’20, page 1165–1184, New York, NY,
USA, 2020. Association for Computing Machinery.

[19] Yueqi Chen and Xinyu Xing. Slake: Facilitating
slab manipulation for exploiting vulnerabilities in
the linux kernel. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communi-
cations Security, CCS ’19, page 1707–1722, New
York, NY, USA, 2019. Association for Computing
Machinery.

[20] Yueqi Chen and Xinyu Xing. SLAKE: Facilitating
Slab Manipulation for Exploiting Vulnerabilities in
the Linux Kernel. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communi-
cations Security, pages 1707–1722, London United
Kingdom, November 2019. ACM.

[21] Vitaly Chipounov, Volodymyr Kuznetsov, and
George Candea. The s2e platform: Design, imple-
mentation, and applications. ACM Transactions
on Computer Systems (TOCS), 30(1):1–49, 2012.

[22] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian
Tsai, Stefan Saroiu, Alec Wolman, and Onur Mutlu.
Are we susceptible to rowhammer? an end-to-end
methodology for cloud providers. In 2020 IEEE
Symposium on Security and Privacy (SP), pages
712–728. IEEE, 2020.

[23] Jonathan Corbet. Fun with NULL pointers, part 1.
https://lwn.net/Articles/342330/, 2009. [On-
line; accessed 19-Oct-2023].

[24] Jake Corina, Aravind Machiry, Christopher Salls,
Yan Shoshitaishvili, Shuang Hao, Christopher
Kruegel, and Giovanni Vigna. DIFUZE: Interface
aware fuzzing for kernel drivers. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 2123–2138,
2017.

[25] Scott A Crosby and Dan S Wallach. Denial of
service via algorithmic complexity attacks. In 12th
USENIX Security Symposium (USENIX Security
03), 2003.

[26] Lucas Davi, David Gens, Christopher Liebchen,
and Ahmad-Reza Sadeghi. Pt-rand: Practical mit-
igation of data-only attacks against page tables.
In Proc. of 24th Annual Network & Distributed
System Security Symposium (NDSS). feb 2017.

[27] Mark Dowd, John McDonald, and Justin Schuh.
The art of software security assessment: Identifying
and preventing software vulnerabilities. Pearson
Education, 2006.

[28] Navid Emamdoost, Qiushi Wu, Kangjie Lu, and
Stephen McCamant. Detecting kernel memory
leaks in specialized modules with ownership reason-
ing. In The 2021 Annual Network and Distributed
System Security Symposium (NDSS’21), 2021.

[29] Nicolas Falliere, Liam O Murchu, Eric Chien, et al.
W32. stuxnet dossier. White paper, symantec corp.,
security response, 5(6):29, 2011.

[30] David Gens, Simon Schmitt, Lucas Davi, and
Ahmad-Reza Sadeghi. K-miner: Uncovering mem-
ory corruption in linux. In NDSS, 2018.

[31] Enes Göktas, Kaveh Razavi, Georgios Portokalidis,
Herbert Bos, and Cristiano Giuffrida. Speculative
probing: Hacking blind in the spectre era. In
Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, CCS
’20, page 1871–1885, New York, NY, USA, 2020.
Association for Computing Machinery.

[32] Google. kctf - kctf is a kubernetes-based infras-
tructure for ctf competitions, 2025.

[33] Daniel Gruss. Software-based microarchitectural
attacks, 2017.

[34] Daniel Gruss, Clémentine Maurice, Anders Fogh,
Moritz Lipp, and Stefan Mangard. Prefetch side-
channel attacks: Bypassing smap and kernel aslr. In
Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, pages
368–379, 2016.

https://lwn.net/Articles/342330/


[35] Ziyi Guo, Dang K Le, Zhenpeng Lin, Kyle Zeng,
Ruoyu Wang, Tiffany Bao, Yan Shoshitaishvili,
Adam Doupé, and Xinyu Xing. Take a step fur-
ther: Understanding page spray in linux kernel ex-
ploitation. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 1189–1206, Philadel-
phia, PA, August 2024. USENIX Association.

[36] Tianshuo Han, Xiaorui Gong, and Jian Liu. CARD-
SHARK: Understanding and stablizing linux ker-
nel concurrency bugs against the odds. In 33rd
USENIX Security Symposium (USENIX Security
24), pages 6203–6218, Philadelphia, PA, August
2024. USENIX Association.

[37] Yu Hao, Guoren Li, Xiaochen Zou, Weiteng Chen,
Shitong Zhu, Zhiyun Qian, and Ardalan Amiri
Sani. SyzDescribe: Principled, automated, static
generation of syscall descriptions for kernel drivers.
In 2023 IEEE Symposium on Security and Privacy
(SP), pages 3262–3278. IEEE, 2023.

[38] Sean Heelan, Tom Melham, and Daniel Kroen-
ing. Automatic heap layout manipulation for ex-
ploitation. In 27th USENIX security symposium
(USENIX security 18), pages 763–779, 2018.

[39] Shih-Kun Huang, Min-Hsiang Huang, Po-Yen
Huang, Han-Lin Lu, and Chung-Wei Lai. Soft-
ware crash analysis for automatic exploit genera-
tion on binary programs. IEEE Transactions on
Reliability, 63(1):270–289, 2014.

[40] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang.
Analyzing integrity protection in the SELinux ex-
ample policy. In 12th USENIX Security Symposium
(USENIX Security 03), 2003.

[41] Dae R. Jeong, Kyungtae Kim, Basavesh Shivaku-
mar, Byoungyoung Lee, and Insik Shin. Razzer:
Finding kernel race bugs through fuzzing. In 2019
IEEE Symposium on Security and Privacy (SP),
pages 754–768, 2019.

[42] Zheyue Jiang, Yuan Zhang, Jun Xu, Xinqian Sun,
Zhuang Liu, and Min Yang. Aem: Facilitating
cross-version exploitability assessment of linux ker-
nel vulnerabilities. In 2023 IEEE Symposium on
Security and Privacy (SP), pages 2122–2137. IEEE,
2023.

[43] Brian Johannesmeyer, Jakob Koschel, Kaveh
Razavi, Herbert Bos, and Cristiano Giuffrida.
Kasper: Scanning for generalized transient execu-
tion gadgets in the linux kernel. In NDSS, volume 1,
page 12, 2022.

[44] Rob Johnson and David Wagner. Finding user/k-
ernel pointer bugs with type inference. In USENIX
Security Symposium, volume 2, page 0, 2004.

[45] Titus Kaletta and Michael O Hengartner. Finding
function in novel targets: C. elegans as a model
organism. Nature reviews Drug discovery, 5(5):387–
399, 2006.

[46] Vasileios P. Kemerlis, Michalis Polychronakis, and
Angelos D. Keromytis. ret2dir: Rethinking kernel
isolation. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 957–972, San Diego,
CA, August 2014. USENIX Association.

[47] Vasileios P Kemerlis, Michalis Polychronakis, and
Angelos D Keromytis. ret2dir: Rethinking kernel
isolation. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 957–972, 2014.

[48] Kyungtae Kim, Dae Jeong, Chung Hwan Kim,
Yeongjin Jang, Insik Shin, and Byoungyoung Lee.
Hfl: Hybrid fuzzing on the linux kernel. 01 2020.

[49] Amit Klein and Benny Pinkas. From IP ID to de-
vice ID and KASLR bypass. In 28th USENIX Secu-
rity Symposium (USENIX Security 19), pages 1063–
1080, Santa Clara, CA, August 2019. USENIX As-
sociation.

[50] Paul Kocher, Jann Horn, Anders Fogh, , Daniel
Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spec-
tre attacks: Exploiting speculative execution. In
IEEE Symposium on Security and Privacy, 2019.

[51] Jakob Koschel, Pietro Borrello, Daniele Cono
D’Elia, Herbert Bos, and Cristiano Giuffrida. Un-
contained: uncovering container confusion in the
linux kernel. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 5055–5072, 2023.

[52] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu,
Bernhard Heinloth, Valentin Rothberg, Andreas
Ruprecht, Wolfgang Schröder-Preikschat, Daniel
Lohmann, and Rüdiger Kapitza. Attack surface
metrics and automated compile-time OS kernel
tailoring. In Proceedings of the 20th Network and
Distributed Systems Security Symposium. The In-
ternet Society, 2013.

[53] Chris Lattner and Vikram Adve. Llvm: A com-
pilation framework for lifelong program analysis
& transformation. In International symposium
on code generation and optimization, 2004. CGO
2004., pages 75–86. IEEE, 2004.



[54] Juneyoung Lee, Yoonseung Kim, Youngju Song,
Chung-Kil Hur, Sanjoy Das, David Majnemer, John
Regehr, and Nuno P. Lopes. Taming undefined
behavior in llvm. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2017,
page 633–647, New York, NY, USA, 2017. Associ-
ation for Computing Machinery.

[55] Yoochan Lee, Jinhan Kwak, Junesoo Kang, Yuseok
Jeon, and Byoungyoung Lee. Pspray: Timing
Side-Channel based linux kernel heap exploitation
technique. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 6825–6842, Anaheim,
CA, August 2023. USENIX Association.

[56] Yoochan Lee, Changwoo Min, and Byoungyoung
Lee. ExpRace: Exploiting kernel races through
raising interrupts. In 30th USENIX Security Sym-
posium (USENIX Security 21), pages 2363–2380.
USENIX Association, August 2021.

[57] Zhengchuan Liang, Xiaochen Zou, Chengyu Song,
and Zhiyun Qian. K-leak: Towards automating the
generation of multi-step infoleak exploits against
the linux kernel. In NDSS. Internet Society, 2024.

[58] Zhenpeng Lin, Yueqi Chen, Yuhang Wu, Dongliang
Mu, Chensheng Yu, Xinyu Xing, and Kang Li.
Grebe: Unveiling exploitation potential for linux
kernel bugs. In 2022 IEEE Symposium on Security
and Privacy (SP), pages 2078–2095, 2022.

[59] Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. Dirty-
cred: Escalating privilege in linux kernel. In Pro-
ceedings of the 2022 ACM SIGSAC conference on
computer and communications security, pages 1963–
1976, 2022.

[60] Moritz Lipp, Andreas Kogler, David Oswald,
Michael Schwarz, Catherine Easdon, Claudio
Canella, and Daniel Gruss. Platypus: Software-
based power side-channel attacks on x86. In 2021
IEEE Symposium on Security and Privacy (SP),
pages 355–371. IEEE, 2021.

[61] Danjun Liu, Pengfei Wang, Xu Zhou, Wei Xie, Gen
Zhang, Zhenhao Luo, Tai Yue, and Baosheng Wang.
From release to rebirth: Exploiting thanos objects
in linux kernel. IEEE Transactions on Information
Forensics and Security, 18:533–548, 2022.

[62] Kangjie Lu, Aditya Pakki, and Qiushi Wu. Detect-
ing Missing-Check bugs via semantic- and Context-
Aware criticalness and constraints inferences. In
28th USENIX Security Symposium (USENIX Secu-
rity 19), pages 1769–1786, Santa Clara, CA, August
2019. USENIX Association.

[63] Kangjie Lu, Chengyu Song, Taesoo Kim, and
Wenke Lee. Unisan: Proactive kernel memory
initialization to eliminate data leakages. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16,
page 920–932, New York, NY, USA, 2016. Associ-
ation for Computing Machinery.

[64] Yunlong Lyu, Yi Fang, Yiwei Zhang, Qibin Sun,
Siqi Ma, Elisa Bertino, Kangjie Lu, and Juanru
Li. Goshawk: Hunting memory corruptions via
structure-aware and object-centric memory opera-
tion synopsis. In 2022 IEEE Symposium on Secu-
rity and Privacy (SP), pages 2096–2113, 2022.

[65] Lukas Maar, Stefan Gast, Martin Unterguggen-
berger, Mathias Oberhuber, and Stefan Mangard.
Slubstick: Arbitrary memory writes through prac-
tical software cross-cache attacks within the linux
kernel. In Davide Balzarotti and Wenyuan Xu, edi-
tors, 33rd USENIX Security Symposium, USENIX
Security 2024, Philadelphia, PA, USA, August 14-
16, 2024. USENIX Association, 2024.

[66] Aravind Machiry, Chad Spensky, Jake Corina, Nick
Stephens, Christopher Kruegel, and Giovanni Vi-
gna. DR. CHECKER: A soundy analysis for linux
kernel drivers. In 26th USENIX Security Sym-
posium (USENIX Security 17), pages 1007–1024,
Vancouver, BC, August 2017. USENIX Associa-
tion.

[67] Andrea Mambretti, Alexandra Sandulescu,
Alessandro Sorniotti, William Robertson, Engin
Kirda, and Anil Kurmus. Bypassing memory
safety mechanisms through speculative control
flow hijacks. In 2021 IEEE European Symposium
on Security and Privacy (EuroS&P), pages
633–649. IEEE, 2021.

[68] Linux man page. kernel_lockdown(7).
https://man7.org/linux/man-pages/man7/
kernel_lockdown.7.html, 2023. [Online; accessed
19-Oct-2023].

[69] Frank Mayer, Karl MacMillan, and David Caplan.
SELinux By Example: Using Security Enhanced
Linux. Prentice Hall PTR, Englewood Cliffs, NJ,
USA, 2006.

[70] Paul McKenney. Signed overflow optimization haz-
ards in the kernel. https://lwn.net/Articles/
511259/, 2012. [Online; accessed 19-Oct-2023].

[71] Dongliang Mu, Yuhang Wu, Yueqi Chen, Zhenpeng
Lin, Chensheng Yu, Xinyu Xing, and Gang Wang.
An in-depth analysis of duplicated linux kernel

https://man7.org/linux/man-pages/man7/kernel_lockdown.7.html
https://man7.org/linux/man-pages/man7/kernel_lockdown.7.html
https://lwn.net/Articles/511259/
https://lwn.net/Articles/511259/


bug reports. In Network and Distributed Systems
Security (NDSS) Symposium 2022, 2022.

[72] PacketLabs. Demystifying the market
for zero-day software exploits. https:
//packetlabs.net/posts/demystifying-the-
market-for-zero-day-software-exploits/,
2024. [Online; accessed 06-Jun-2024].

[73] Mauro Pezzè and Michal Young. Software testing
and analysis: process, principles, and techniques.
John Wiley & Sons, 2008.

[74] Hany Ragab, Andrea Mambretti, Anil Kurmus,
and Cristiano Giuffrida. GhostRace: Exploiting
and mitigating speculative race conditions. In 33rd
USENIX Security Symposium (USENIX Security
24), pages 6185–6202, Philadelphia, PA, August
2024. USENIX Association.

[75] Sergej Schumilo, Cornelius Aschermann, Robert
Gawlik, Sebastian Schinzel, and Thorsten Holz.
kAFL: Hardware-Assisted feedback fuzzing for OS
kernels. In 26th USENIX Security Symposium
(USENIX Security 17), pages 167–182, Vancouver,
BC, August 2017. USENIX Association.

[76] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clé-
mentine Maurice, Thomas Schuster, Anders Fogh,
and Stefan Mangard. Automated detection, ex-
ploitation, and elimination of double-fetch bugs
using modern cpu features. In Proceedings of the
2018 on Asia Conference on Computer and Com-
munications Security, ASIACCS ’18, page 587–600,
New York, NY, USA, 2018. Association for Com-
puting Machinery.

[77] Alexander Sotirov. Heap feng shui in javascript.
Black Hat Europe, 2007:11–20, 2007.

[78] Hao Sun, Yuheng Shen, Jianzhong Liu, Yiru Xu,
and Yu Jiang. KSG: Augmenting kernel fuzzing
with system call specification generation. In 2022
USENIX Annual Technical Conference (USENIX
ATC 22), pages 351–366, Carlsbad, CA, July 2022.
USENIX Association.

[79] Laszlo Szekeres, Mathias Payer, Tao Wei, and
Dawn Song. Sok: Eternal war in memory. In
2013 IEEE Symposium on Security and Privacy,
pages 48–62. IEEE, 2013.

[80] Erik Van Der Kouwe, Vinod Nigade, and Cristiano
Giuffrida. Dangsan: Scalable use-after-free detec-
tion. In Proceedings of the Twelfth European Con-
ference on Computer Systems, pages 405–419, 2017.

[81] Victor van der Veen, Yanick Fratantonio, Martina
Lindorfer, Daniel Gruss, Clementine Maurice, Gio-
vanni Vigna, Herbert Bos, Kaveh Razavi, and Cris-
tiano Giuffrida. Drammer: Deterministic rowham-
mer attacks on mobile platforms. In Proceedings
of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’16, page
1675–1689, New York, NY, USA, 2016. Association
for Computing Machinery.

[82] Julien Vanegue, Sean Heelan, and Rolf Rolles. SMT
solvers in software security. WOOT, 12:9–22, 2012.

[83] Dmitry Vyukov. Syzkaller, 2015.

[84] Fish Wang and Yan Shoshitaishvili. Angr-the next
generation of binary analysis. In 2017 IEEE Cyber-
security Development (SecDev), pages 8–9. IEEE,
2017.

[85] Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and
Steve Dodier-Lazaro. How Double-Fetch situations
turn into Double-Fetch vulnerabilities: A study of
double fetches in the linux kernel. In 26th USENIX
Security Symposium (USENIX Security 17), pages
1–16, Vancouver, BC, August 2017. USENIX As-
sociation.

[86] Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and
Steve Dodier-Lazaro. How {Double-Fetch} situa-
tions turn into {Double-Fetch} vulnerabilities: A
study of double fetches in the linux kernel. In 26th
USENIX Security Symposium (USENIX Security
17), pages 1–16, 2017.

[87] Ruipeng Wang, Kaixiang Chen, Chao Zhang, Zulie
Pan, Qianyu Li, Siliang Qin, Shenglin Xu, Min
Zhang, and Yang Li. AlphaEXP: An expert system
for identifying Security-Sensitive kernel objects. In
32nd USENIX Security Symposium (USENIX Se-
curity 23), pages 4229–4246, Anaheim, CA, August
2023. USENIX Association.

[88] Wenwen Wang, Kangjie Lu, and Pen-Chung Yew.
Check it again: Detecting lacking-recheck bugs
in os kernels. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communi-
cations Security, CCS ’18, page 1899–1913, New
York, NY, USA, 2018. Association for Computing
Machinery.

[89] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao
Jia, Nickolai Zeldovich, and M. Frans Kaashoek.
Undefined behavior: What happened to my code?
In Proceedings of the Asia-Pacific Workshop on
Systems, APSYS ’12, New York, NY, USA, 2012.
Association for Computing Machinery.

https://packetlabs.net/posts/demystifying-the-market-for-zero-day-software-exploits/
https://packetlabs.net/posts/demystifying-the-market-for-zero-day-software-exploits/
https://packetlabs.net/posts/demystifying-the-market-for-zero-day-software-exploits/


[90] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zel-
dovich, and M. Frans Kaashoek. Improving in-
teger security for systems with KINT. In 10th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), pages 163–177,
Hollywood, CA, October 2012. USENIX Associa-
tion.

[91] Yan Wang, Chao Zhang, Zixuan Zhao, Bolun
Zhang, Xiaorui Gong, and Wei Zou. {MAZE}: To-
wards automated heap feng shui. In 30th USENIX
Security Symposium (USENIX Security 21), pages
1647–1664, 2021.

[92] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou.
KEPLER: Facilitating control-flow hijacking prim-
itive evaluation for linux kernel vulnerabilities. In
28th USENIX Security Symposium (USENIX Secu-
rity 19), pages 1187–1204, Santa Clara, CA, August
2019. USENIX Association.

[93] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui
Gong, and Wei Zou. FUZE: Towards facilitating
exploit generation for kernel Use-After-Free vul-
nerabilities. In 27th USENIX Security Symposium
(USENIX Security 18), pages 781–797, Baltimore,
MD, August 2018. USENIX Association.

[94] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael
Backes, and Taesoo Kim. Precise and scalable
detection of double-fetch bugs in os kernels. In
2018 IEEE Symposium on Security and Privacy
(SP), pages 661–678, 2018.

[95] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang,
Tianyi Xie, Yuanyuan Zhang, and Dawu Gu. From
collision to exploitation: Unleashing use-after-free
vulnerabilities in linux kernel. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 414–425, 2015.

[96] Bennet Yee, David Sehr, Gregory Dardyk,
J Bradley Chen, Robert Muth, Tavis Ormandy,
Shiki Okasaka, Neha Narula, and Nicholas
Fullagar. Native client: A sandbox for portable,
untrusted x86 native code. Communications of
the ACM, 53(1):91–99, 2010.

[97] Kyle Zeng, Yueqi Chen, Haehyun Cho, Xinyu Xing,
Adam Doupé, Yan Shoshitaishvili, and Tiffany Bao.
Playing for K(H)eaps: Understanding and improv-
ing linux kernel exploit reliability. In 31st USENIX
Security Symposium (USENIX Security 22), pages
71–88, Boston, MA, August 2022. USENIX Asso-
ciation.

[98] Kyle Zeng, Zhenpeng Lin, Kangjie Lu, Xinyu Xing,
Ruoyu Wang, Adam Doupé, Yan Shoshitaishvili,
and Tiffany Bao. Retspill: Igniting user-controlled
data to burn away linux kernel protections. In
Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, CCS
’23, page 3093–3107, New York, NY, USA, 2023.
Association for Computing Machinery.

[99] Yizhuo Zhai, Yu Hao, Hang Zhang, Daimeng
Wang, Chengyu Song, Zhiyun Qian, Mohsen Lesani,
Srikanth V. Krishnamurthy, and Paul Yu. Ubitect:
A precise and scalable method to detect use-before-
initialization bugs in linux kernel. In Proceedings of
the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE
2020, page 221–232, New York, NY, USA, 2020.
Association for Computing Machinery.

[100] Yizhuo Zhai, Yu Hao, Zheng Zhang, Weiteng
Chen, Guorern Li, Zhiyun Qian, Chengyu Song,
Manu Sridharan, Srikanth V. Krishnamurthy,
Trent Jaeger, and Paul Yu. Progressive Scrutiny:
Incremental Detection of UBI bugs in the Linux
Kernel. In Proceedings of the 2020 ISOC Net-
work and Distributed Systems Security Symposium
(NDSS), February 2022.

[101] Tong Zhang, Wenbo Shen, Dongyoon Lee,
Changhee Jung, Ahmed M. Azab, and Ruowen
Wang. PeX: A permission check analysis frame-
work for linux kernel. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1205–
1220, Santa Clara, CA, August 2019. USENIX As-
sociation.

[102] Xiaochen Zou, Guoren Li, Weiteng Chen, Hang
Zhang, and Zhiyun Qian. SyzScope: Revealing
High-Risk security impacts of Fuzzer-Exposed bugs
in linux kernel. In 31st USENIX Security Sym-
posium (USENIX Security 22), pages 3201–3217,
Boston, MA, August 2022. USENIX Association.

Appendix

Paper selection methodology
For exploit generation papers, we have used the following
search terms on Google Scholar to select paper: “kernel
automated exploit generation”, “kernel exploitation” and
limited ourselves initially to papers published in top-tier
security venues (USENIX Security, ACM CCS, NDSS,
and IEEE Security and Privacy) that automate some
aspect of kernel exploitation, initially limiting ourselves
to papers published from 2013 to 2023. In a second step,



we explored papers cited in the related work sections
of these papers, and included papers relevant to finding
vulnerabilities in the kernel as well as kernel-specific
novel exploitation techniques, even when they were not

automated. We reiterated the process we those added
papers. Finally, we added papers that were pointed out
to us by reviewers of an earlier draft of this paper.


	Introduction
	Kernel exploitation
	System model and definitions
	Attacker models
	Attacker goals

	End-to-end AKEG
	Exploitation steps
	Defining automation
	Vulnerability classes

	Analysis of automation techniques
	Methodology
	Analysis

	Open problems and recommendations
	Attacker model and goal
	Bug prioritization beyond path exploration
	Vulnerability classes
	Portability
	Tooling, reuse and reproducibility
	Ethics of AEG
	Improving AEG evaluations

	Conclusion

