EXECUTION SECURITY IN THE SPECTRE ErRA

A dissertation presented in partial fulfillment of the

requirements for the degree of
DoCTOR OF PHILOSOPHY
in the field of

CYBERSECURITY
by

ANDREA MAMBRETTI

Committee Members
Engin Kirda, Northeastern University
Guevara Noubir, Northeastern University
Aanjhan Ranganathan, Northeastern University
Alessandro Sorniotti, IBM Research - Europe
Anil Kurmus, IBM Research - Europe

Vasileios Kemerlis, Brown University

NORTHEASTERN UNIVERSITY
Kuaoury COLLEGE OF COMPUTER SCIENCES
BosTON, MASSACHUSETTS

JANUARY 2022

Northeastern University
Khoury College of
Computer Sciences

PhD Thesis Approval

Thesis Title: Execution Security in the Spectre Era

Author: Andrea Mambretti

PhD Program: Computer Science _ x__ Cybersecurity Personal Health Informatics

PhD Thesis Approval to complete all degree requirements for the above PhD program.

6/\4/ W 01/26/2022
Engin Kirda
Thesis Advisor Date
Guevara Noubir ML I/a?g /)O 22
Thesis Reader Date
Aanjhan Ranganathan W ol { 9\% {Q’O Q\(Q
Thesis Reader Date
Alessandro Sorniotti W 01/26/2022
Thesis Reader — Date
A N~
Anil Kurmus ’\/__/ / 26 Jan 2022
" Thesis Reader / Date
Vasileios Kemerlis % 01/26/2022
Thesis Reader Date
KHOURY COLLEGE APPROVAL.:
03/31/2022
Associate Deanfor Graaumte Programs Date

COPY RECEIVED BY GRADUATE STUDENT SERVICES:

-

31 March 2022
Recipient’s Signature Date

Distribution: Once completed, this form should be scanned and attached to the front of the electronic
dissertation document (page 1). An electronic version of the document can then be uploaded to the
Northeastern University-UMI Website.

For my parents, Patrizia & Angelo.
For my sister Manu, and my brother Marco.

Abstract

Since early 2018 with the release of new attacks such as Meltdown and Spectre the search for
new attack surfaces left the software domain and reached the microarchitectural world. This new
type of vulnerabilities exploits bugs, or performance optimizations within the CPU to carry out
information disclosure even across privilege domains. This new class of vulnerabilities, referred
broadly as transient execution, presents a unique challenge because of the lack of details in the
microarchitectural realm and tools to study such behaviors. While high level views are available,
internal CPU implementations are highly variable from the vendors and the CPU families and
often covered by patents.

In this thesis, I provide research into understanding the impact of transient execution attacks
in the field of system security. My contributions focus on two specific problems, improving the
analysis of transient execution attacks, and understanding their impact on the security of modern
systems—i.e., the effects of these attacks on the current existing threat models.

First, I provide a new debug-like technique to study transient execution attacks and reverse
engineer the microarchitecture. Leveraging the CPU Performance Monitor Counters (PMCs),
I show how it is possible to deterministically observe the side effects of transient execution. I
integrate such principle in a new tool, SPECULATOR, that provides the infrastructure to easily build
tests to shed light on the microarchitecture internals. Using SPECULATOR, I provide, as results,
insights in the microarchitecture internal behaviors, the study of a new Spectre variant called Split
Spectre and, two new side-channel gadgets—-i.e., the Branch Target Buffer (BTB) and the instruction
cache (i-cache)- that can be used as alternative to the common data cache.

Second, I provide insights on the effects of transient execution attacks in existing threat models.
My effort towards solving this problem is twofold. On the one hand, I study a subset of the Spectre
family of attacks, the SPEculative ARchitectural control flow hijacks (SPEAR) and their effect on
current memory corruption mitigations—i.e., the Stack Smashing Protection (SSP), the Control
Flow Integrity (CFI), and the stack protections in memory safe languages. I show how these
mitigations, while mitigating memory corruption vulnerabilities, extend the attack surface in the
context of transient execution attacks. My results indicate the need for such mitigations to be
re-designed to include transient execution attacks in the threat model.

On the other hand, I present the first study of the transient execution vulnerability checkers.
I provide insights in current methodologies—i.e., their strengths and weaknesses—, and show
how these tools are not adequate to understand the security stance of a system against transient
execution attacks. As a result, I propose a new hybrid tool, called GHOSTBUSTER that overcomes
the issues of the state-of-the-art and provides results that are threat model aware.

Contents

List of Figures xi
List of Tables xiii
Acknowledgements xiv
1 Introduction 1
2 Background 5
2.1 Microarchitecture L 5
2.1.1 Pipeline 5

212 Cache e 5

2.1.3 BranchPrediction. L Lo 6

2.14 Out-of-order Execution 6

2.1.5 Speculative Execution 6

2.1.6 Multiprocessing and multithreading 7

2.2 Transient executionattacks oL Lo 7
2.21 Fault-based attacks L 7

2.2.2 Speculation-based attacks o Lo 7

2.23 Speculative Execution Attacks Phases 8

2.3 Privilege boundaries and attack impact oo oo 9

24 Defenses 9
241 MemoryFencing 9

242 Branchlessmasking L. 10

243 Retpoline 10

244 KPTI e 10

2.45 Indirect Branch Restricted Speculation 10

2.4.6 Indirect Branch Predictor Barrier 10

2.4.7 Single thread indirect Branch Predictors 10

248 RSBAING o oot 11

2.4.9 SSBmitigation 11

2410 PTEiInversion 11

2411 VMCconditional 11

vil

3 Related Work 13

3.1 Speculative Execution 13
3.2 CacheSide Channels 13
3.3 Speculative Execution Attacks 13
3.4 Mitigations e 14
3.5 Safe Speculation Designs 15
4 Debugging Speculative Execution 17
4.1 SPECULATOR v v v v vttt ittt et e e e e e e e s s s e e 18
4.1.1 Performance Monitor Capabilities 18

4.1.2 Objectives 19

4.1.3 Design and Implementation L. 19

4.1.4 Triggering Speculative Execution 21

4.1.5 Speculative Execution Markers 21

4.2 Using SPECULATOR: Dissecting the microarchitectural world 23
4.2.1 Return Stack Buffer Size 23

4.2.2 Nesting Speculative Execution, . 25

4.23 Speculative execution across systemcalls 26

424 FlushingtheCache, 26

4.2.5 Speculation window size 27

4.2.6 Stopping Speculative Execution Lo 30

4.2.7 Executable Page Permission 30

4.2.8 Memory Protection Extensions 31

429 Issuedvs.Executedpops o Lo 31

4.3 Using SPECULATOR: Analyzing Attacks and Mitigations 32
43.1 SPLITSPECTRE it ittt ittt ittt 32

432 BTI. . . . o e 33

433 Mitigations 33

4.3.4 Out-of-order execution bandwidth 34

4.4 SPLITSPECTREo v v i ittt ittt i et e e s s e e e s e 35
44.1 The SplitSpectre Gadget 36

442 TheAnalysis 38

4.5 New microarchitectural side-channels 41
451 Icache Attack 42

452 IcacheDiscussion 42

453 Double BTT Attack 44

4.54 Practical considerations L Lo 47

4.6 Gadgetsanalysis 48
4.6.1 Icache Attack 48

4.6.2 Double BTT Attack 49

47 Mitigations 51

5 Impact of Spectre 53

5.1 Speculative execution attacks on memory safety mechanisms. 54
5.1.1 SPEARattacks 56
5.1.2 Speculation window and eviction 60
5.1.3 Speculative ROP 61
52 Casestudies 61
5.2.1 Attacking stack canaries o o oL oL 62
522 Attacking CFI 68
5.2.3 Attacking memory safe languages L. 69
5.2.4 SPEAR attack against Rust bounds checking 73
5.3 Mitigations against SPEARo o 75
53.1 Mitigations for SSP 75
5.3.2 Mitigations for the Gocompiler 76
5.3.3 Mitigations for GCC VTV 78
54 Discussionon SPEAR 79
5.5 TestingTools o 81
5.5.1 Information gatheringtools 81
5.5.2 Empiricaltools 81
5.6 Methodology 82
56,1 UseCases 83
5.6.2 SystemsandPlatforms o L oo 83
5.7 Testing Tools Analysis 84
5.7.1 Toolscomparison 87
572 Analysis 89
5.8 Recommendations L 90
581 Limitcachenoise 91
5.8.2 Define the right use case and understand your threat model 92
5.8.3 Understanding information gathering toolsresults 92
5.84 Useamixedapproach, 93
5.8.,5 Staticanalysis 93
5.9 GhostBuster 94
6 Future Work 97
7 Papers 99
7.1 Related Publications 99
7.2 Otherwork e 99
7.2.1 Lava: Large-scale automated vulnerability addition [1] 100

7.2.2 HotFuzz: Discovering Algorithmic Denial-of-Service Vulnerabilities Through
Guided Micro-Fuzzing [2] 100
7.23 Trellis: Privilege separation for multi-user applications made easy [3] . . 100
7.2.4 HONEYBUG: hypervisor-based approach for gathering attacker insights . 101
8 Conclusions 103

ix

Bibliography 105

List of Figures

4.1

4.2

4.3
4.4
4.5

4.6

4.7

4.8

4.9

The architecture of SPECULATOR. A template with the speculative execution
trigger and a list of instructions to be speculatively executed are the input to
the code generation. The code snippets are run repeatedly under supervision of
the speculator monitor, which captures the event specified in the configuration
file. Finally, the measurements are post-processed to present a final report on
speculative execution behavior. o Lo Lo 20

Flow chart of one of the experiment template used in SPECULATOR. The setup
code brings the branch predictor in a specific state that will cause the later branch
to mispredict and speculatively execute the code snippet consisting of the in-
structions. The speculative execution of the instructions is measured by the PMC
infrastructure, which is triggered by the corresponding start/stop instructions
indicated in the flow chart. oo oo 22

Return Stack Buffer test on Kabylake. 25
Return Stack Buffer teston AMD Ryzen. 25

Speculation window of a store-to-load forward failure, measured in executed
ENOPs on Broadwell. 30

a) Speculative execution after an MPX bounds violation. b) Performance counter
numbers for an increasing number of speculatively executed relative load instruc-
tions. The graph shows that the number of issued instructions corresponds to the
number of executed instructions, justifying the use of such instructions as markers. 32

Reorder buffer size test results on Broadwell and Skylake. Since the marker
instruction is no longer executed for a sufficiently large number of NOPs, the
number of executed pops drops at the size of the reorder buffer. 35

RSB test on Broadwell. As in the AMD case, Broadwell is able to predict the
location of my target even if the RSBisempty. 36

A comparison of regular Spectre v1 and SPLITSPECTRE. While SPLITSPECTRE only
requires a simple array access, the speculation window needs to be sufficiently
large to contain both the gadget and the second array access exercised by the
attacker. 37

4.10 A conceptual view of a SPLITSPECTRE attack instance with JavaScript. 38

pel

4.11

4.12

4.13

4.14

4.15
4.16

5.1
5.2
53
5.4

5.5

An examination of the SPLITSPECTRE execution trace between the length check
of string.charCodeAt_impl() and the second array access using SPECULATOR. The
graph shows my results of the test on a Coffee Lake machine. It shows that, on
average, I are not reaching the second array access in speculative execution. The
small spikes in the graph are caused by mispredicted branches in the trace itself,
which lead to nested speculative execution of fast-executing code paths.
Overview of Spectre v2, a SpCFH attack: the attacker performs BTI at first; the
victim speculatively executes the injected gadget whose cache side effects are later
measured by the attacker. L
Description of the icache attack: the attacker performs BTI at first; the victim
speculatively executes one of two functions depending on the content of a register;
the attacker later times the execution of either function to learn one bit of the
condition register.
Description of the Double BTI attack: the attacker performs BTI at first; the victim
speculatively executes the “reverse” BTI Gadget that further trains the branch
predictor with the value of a register or a memory location; the attacker later
execute the same “reverse” BTI Gadget and based on the side effects of wrong
prediction (e.g., executing an instruction marker to a given location) can guess the
value of the register or memory location
side-channel-receive approach using data cache access pattern
Double BTT attack success rate on leaking a one byte of secret

Overview of speculative attack against memory safety mechanisms.
Overview of various Speculative control flow hijacking attacks.
Overhead computed as normalized runtime over SSP Disabled baseline.
Empirical CDF of the logarithm of the overhead percentage for the considered
mitigations. Overhead data is gathered by running the full set of benchmarks of
the Go runtime version 1.12.0.
GHOSTBUSTER’s overview. GHOSTBUSTER leverages SPECTRE-MELTDOWN-CHECKER
and my modified version of SPECULATOR to assess the system security using both
known methodologies, gathering and empirical. Then, it aggregates the results
in a final report factoring in also the various use cases I identified to give a more
accurate picture to the user. With solid circles I describe the major components of
GHosTBUSTER while with dotted circles I highlight operations performed.

xii

41

79

91

List of Tables

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

5.3
5.4

The CPUs per architecture I use SPECULATOR on. While Haswell and Skylake are
new designs — “tocks” in Intel nomenclature — Broadwell is a “tick”, a die-shrink of
Haswell. Kaby and Coffee Lake are instead optimized versions of Skylake design
within the same die size 24

Speculation window of a conditional branch depending on the type of instructions
needed to resolve the branch as well as the placement of the value involved in the
condition, measuredincycles.o o o oo 29

Speculation window of an indirect control flow transfer, measured in cycles. The
speculation window size depends on where the target of the indirect control flow
transferisstored. L 29

Success rates for the SPLITSPECTRE attack on JavaScript. I perform 100 runs, each
run trying to leak a string of 10 consecutive characters. I provide numbers on both
the highest and the second highest scoring characters. 40

icache attack experiment with a gadget from libhttp-parser.so: each row displays
the success rate in guessing the value of the victim’s secret. The success rate
is computed as the rate between samples displaying an icache hit (resp. miss)
when the value of the victim’s secret is 0 (resp. 1). An icache hit is defined as an
execution of the icache gadget timed below a pre-determined threshold. 49

Default STIBP settings in the kernel used by the distributions tested in my evaluation 51

Success rate (in percentage) computed over 1000 iterations for architectural or
speculative overwrites of backward and forward edges performed on various
architectures families. Lo Lo Lo o 59

ROP gadgets used for building Spectre v1 chain with their corresponding occur-
rences. The search space is a subset of libc, libpng, libz and Id executable pages,
obtained by filtering out pages unmapped in the victim’s address space and pages
without a valid TLB mapping. 65

CPU families the tools have been tested with the corresponding kernel version . . 83
Major pitfalls and limitations observed for each tool. I indicate with v that the

pitfall is present, whereas I leave blank otherwise. 85

xiil

55

5.6
5.7

Classification of the result types for each of the attacks with respect to the use
cases described in Section 5.6.1. Empirical tools do not focus on specific use cases
but rather on the existence of the attack vector. The table reflects this by referring
the use case as synthetic. Results are reported as: v if the tool reports information
about a certain attack within the use case considered; = if the information can
be inferred but it is not directly reported; X where either no information can be
inferred from the tool; finally the cell is left blank where the attack cannot be
performed or it is not feasible under the specificusecase.
Tools version used in the experiments
List of the 17 cloud provider tested and their available configurations

Xiv

Acknowledgments

Some people might think that a PhD dissertation like this one is simply the result of the author’s
hard work throughout several years of research. While this is partially true, there is always way
more behind the scene. I strongly believe that my work is also the outcome of the environment I
had the luck to live in. The environment mostly being all the great people I had the pleasure to
meet and learn from in my life. Here, I would like to try to acknowledge each and everyone of
these people.

First and foremost, I would like to thank my parents, my mom Patrizia and my dad Angelo
that through their hard work and amazing guidance allowed me to pursue my dreams and achieve
all the things I had without any pressure or any constraint. I would like also to thank my sister
Emanuela, my brother Marco, my brother-in-law Dario, all my cousins, and all my grandparents
Caterina, and the late Alice, Giovanni and Federico for always being there supporting me. A
special thanks also goes to Anna, Carolina, Danilo, and Vittorio for being my second family since
many years and that, despite everything, never really left my side.

Beyond my family, I had the extreme luck to find on my path great advisors that directed me
all the way here. Above all, I would like to thank my PhD advisor Engin Kirda which accepted me
in his group and since 2014 has been advising and supporting me, and showed me the ropes of
how to be a good researcher. Also, thanks for the great Netflix suggestions!!! ;-).

During my years of studies in Milano, I had the pleasure to encounter on my path Federico
Maggi, Stefano Zanero, Marco Domenico Santambrogio, Davide Basilio Bartolini, Filippo Sironi,
Francesco Trovo and Alessandro Barenghi that put me in contact with the security and the research
worlds, and pushed me to pursuit a PhD.

From my time in Boston, I would like to thank Michael Weissbacher, Patrick Carter, Collin
Mulliner, Tobias Lauinger, Amin Kharraz, Abdelberi Chaabane, Kaan Onarlioglu, Walter Rweye-
mamu, Andrew Fasano, Arash Molavi, Konstantinos Athanasiou, Christina Dimovasili, Andreas
ten Pas, Sammie Katt, Molly Ohman, Yorgos Zirdelis, Yorgos Efthymiadis, William Lee, Domien
Schepers, Andrea Baisero, Ahmad Bashir, William Blair, Manuel Egele, Wil Robertson, Joshua
Bundt, Tim Leek, Erik-Oliver Blass, Guevara Noubir, Piotr Sapiezynski, Luciana Kiffer, Dimitris
Tsipras, Raul Quadra, Daianne Maia, Claudia Marino, and Claudia Tomsa. Everyone of you made
me feel at home and enjoy each and everyone of the days I spent in the US.

This dissertation would not have been possible without my amazing friends, colleagues, and
mentors from IBM Research Anil Kurmus, Alessandro Sorniotti, Matthias Neugschwandtner,
and Alexandra Sandulescu. To many more papers together! Also, from the big IBM Research
family I would like to thank Chrysa Stathakopoulou, Kaoutar Elkhiyaoui, Angelo De Caro, Marcus
Brandenburger, Marc Stoecklin, and Ellie Androulaki for making IBM Research such a special
place.

XV

From my time in Zirich, I would like to thank Teri Andos, Christina Haupt, Valentina Mar-
chionni, Davide Basilio Bartolini (again), Carlo Ciaccia, Kostantinos Tsoukalas, Yashashwa Pandey.
If there was someone that could have made my decision to move back to Europe easier, it was you.

My passion for computers goes back all the way to my first Commodore64 we first got in
’92/93. During those very early years of my life, through my father’s passion for technology and
electronics, I had the pleasure to come in contact with two very special people, the late Daniele
Rizzo and Davide Butti. The first two hackers I met in my life. From them I learned, directly and
indirectly, more than they can ever imagine.

This dissertation and the rest of the work I generally do is filled with C code or assembly
language. Most people try to avoid such languages because tedious and painful to use. At the
contrary, I fell in love with them during my early programming experience in High School, and
never wanted to leave them ever since. A big part of my love for low level languages and therefore
low level system security comes from my excellent High School teacher Virginia Bacchini which
with extreme clarity and passion start me with programming and her lessons stayed with me all
the way until now.

XVvi

Chapter 1

Introduction

In early 2018, the release of the Spectre [4, 5] and Meltdown [6] vulnerabilities deeply shook the
system security world. These new transient execution vulnerabilities are differently rooted than
the very well studied and understood memory corruption vulnerabilities. They exploit side effects
caused by modern CPU performance optimizations (e.g., out-of-order and speculative execution)
and not bugs within a code base. Transient execution vulnerabilities concern the confidentiality
of a program and not its integrity. Generally, whenever the CPU guesses incorrectly during the
application of one of these performance optimizations, it needs to roll-back the micro-architecture
status and squash the transient instructions involved. The problem that transient execution attacks
leverage is that the status of the micro-architecture is never fully restored to the point before the
guess has taken place. This incomplete operation leaves some visible side effects that are function
of the accessed data and the code that was mistakenly executed. An attacker using one of the
many side/cover channels available can reconstruct possible secrets from those side-effects.

One of the most prominent transient execution attacks is Meltdown. It rely on the fact that
due to out-of-order execution the CPU does not stop executing in case of a fault until the faulty
instruction retires. This has been shown to allow information leakage between different privilege
levels (e.g., user and kernel space) that the fault should have prevented. Meltdown and its variants
are powerful and relatively easy to carry out. However, they are also easy to mitigate in software [7]
(arguably with high overhead), or to fix in hardware in future CPUs by verifying the fault during
speculation and not at instruction retirement. Intel has released fixes in its 9 series of CPUs while
AMD was never vulnerable to this type of attack.

Another notorius transient execution attack is Spectre. Spectre and its variants do not target
a bug within the CPU as Meltdown but code patterns that can cause speculative execution to
mi-speculate towards sensitive code that can leak information through covert channels. Given the
nature of Spectre-like attacks, they are hard to efficiently mitigate and therefore, as it has been
for the buffer overflow, they will not go away anytime soon. Spectre attacks affect any CPU that
supports speculative execution. Mitigations against Spectre attacks are available but due to their
high overhead are generally not applied, or left disabled by default.

In general, studying such new vulnerabilities present several challenges. The lack of details of
the CPU micro-architecture requires extensive and tedious reverse engineering of all the internal
components and their behavior in the context of out-of-order and speculative execution. This
process is made even more challenging due to the lack of tooling to directly control the micro-
architecture internal components leaving the researchers with just the noisy covert channel option

to verify their findings. Finally, even within the same hardware manufacturer the behavior of each
CPU changes across families due to internal design changes. This forces the reverse engineering
effort to be repeated across several CPU models.

Transient execution attacks are able to break the process to process isolation that is part of
the security guarantees the CPU provides at the operating system. Process to process isolation
is one of the building blocks for modern defense mechanisms and its breach is not accounted in
many existing threat models. The ability of Spectre and Meltdown to bypass the isolation has
forced the security community to revise their security threat models to verify they still hold in the
new Spectre era. However, even simply understanding if a system is actually protected against
Spectre and Meltdown is rather complicated. Few tools are available but correctly understanding
their results can be confusing and misleading for system operators. An interpretation mistake can
cause either a false sense of security or, huge performance penalties even when there is no actual
threat. Improvements are necessary in this area to enable system administrators and security
researchers to obtain a better picture of the system status.

Thesis Statement. It is fundamental to have a deterministic view on transient execution to achieve
fast and precise micro-architecture reverse engineering that is the basis for exploring new attack
techniques, and analyze and improve defense mechanisms.

For the purpose of my thesis, I propose to enhance the state of the art in the following areas:

Speculative execution analysis: The first step towards understanding the extent of these at-
tacks requires the ability to reliably observe the speculative execution side-effects within
the micro-architecture. While for memory corruption vulnerabilities there are several tools
like gdb that allow to investigate program crashes, nothing is currently available to analyze
speculative execution and inside the micro-architecture. Related work rely on the very
noisy covert channels to study these attacks and do not decouple any of the phases the
attack is composed making the attacks hard to analyze in details. In essence, using covert
channels adds another source of non-determinism besides the never fully controllable pre-
dictors the attack is leveraging. Attributing the cause of a failed attack observation to either
problems in training the predictor, or in using covert channel is often impossible. Having
a deterministic way of observing the side-effects of mispeculation greately reduces the
complexity on analyzing attacks by limiting the possible root causes of failure. In this area,
I provide the first methodology that allows to observe the speculative execution side-effects
and to dissect each phase of the attack independently. This enables a debug-like approach
and helps to clarify the role of each of the phases of the attack in the overall success and
feasibility. I integrate this technique in a novel tool that I then use to investigate several
micro-architectural behavior as well as a new Spectre variant called Split Spectre and two
new side channels gadgets to build the covert channel.

Understanding Spectre’s impact: In this dissertation, I investigate in which way the security
threat models are impacted by the discovery of transient execution vulnerabilities. First, I
analyze common defenses against memory corruption vulnerabilities (e.g., CFI or SSP) and
show how, while defending from memory corruption vulnerabilities, they extend the attack
surface in the transient execution context. I show how these defenses require a re-design

in the Spectre era. Furthermore, I provide the first comparison of the available transient
execution vulnerability checkers and their underlining methodologies. I describe the pitfalls
all the available tools have and I propose a new guideline for building checkers to prevent
common mistakes. Finally, I introduce a new tool that builds upon related work to overcome
the individually identified pitfalls.

Chapter 2

Background

2.1 Microarchitecture

The microarchitecture can be generally refer to as a specific implementation of an Instruction Set
Architecture (ISA). The ISA can be viewed as an high level description of a computer architecture.
For instance, x86-64 is one of the most popular ISA used today and can be found under two
different microarchitectural implementations, one provided by Intel and the other provided by
AMD. Based on the ISA that is aiming to implement, a modern microarchitecture contains a certain
number of registers, a caching hierarchy, one or several communication busses, a set of decoding
and executions units related to the instructions that are expected to be executed, and a series
of components and optimization designs that aim to boost its performance. Instances of such
performance enhancer optimizations can be branch predictor units, out-of-order execution, or
speculative execution.

Today’s microarchitectures try to optimize every clock cycles by applying extensively opti-
mizations. Most of the details of their exact implementation are kept secret to preserve the IP.
However, most of the major components of the microarchitecture are well understood and I will
provide a brief description in the following sections.

2.1.1 Pipeline

Pipelined CPUs divide the life of an instruction within the microarchitecture into stages. While
an instruction moves from one stage to the next, it opens up the possibility for a new instruction
to start using the stage left empty. This allows the CPU to maximize the use of each stage
of the pipeline without waiting for a single instruction to cross all the stages. This type of
microarchitectural design allows to achieve instruction-level parallelism in a single processor. The
number of stages inside the pipeline hugely depends on the CPU designs. It can variate from 2 to
more than 30 stages.

2.1.2 Cache

Another optimization that can be found in modern microarchitecture design is the cache. The
cache is a very fast piece of memory that is placed closer to the execution units so that most-used
data does not need to be retrieved always from main memory. In today’s CPUs there are several

layers of caches some of which are shared across all cores on the system and others that are
instead private of a specific core. Each cache hierarchy implementation differ in the number of
levels, dimensions, addressing technique and policies under which they operate. In the context of
cache side channels attacks, it is critical to understand how the cache hierarchy works under the
microarchitecture that is target of the attack.

2.1.3 Branch Prediction

Among the most common instructions that can be found in most programs there are branch or
jump instructions, which role is to transfer the control flow to an arbitrary location instead of
the next instruction in the flow. To optimize the pipeline, the CPU needs to know ahead of time
which will be the next instruction to fetch. While this is a relatively easy task when dealing
with direct jump/branch instructions, it is a very complex operation when the CPU needs to
predict indirect branches in which the target is computed at runtime and it might change at each
execution. To solve this issue, modern microarchitectures employ branch predictor units that are
complex machinery which, by looking at the history of a specific branch, try to predict the next
possible target for a specific indirect branch. An example of a modern branch predictor unit is
TAGE [8] that is believed to be the based of many today’s predictors.

2.1.4 Out-of-order Execution

The idea behind out-of-order execution is to allow stream of instructions, that are data independent,
to be executed outside the original order in which the program was written. This optimization
kicks in whenever an instruction causes a stall while waiting for data from main memory. In
many situations, it is possible that downstream some instructions are already ready to go into
execution because they do not depend on the stalled instruction. The CPU starts executing those
instructions in parallel to keep the pipeline utilized. However, after execution these most recent
instructions will be waiting for the stalled instruction to retire to officially be committed at the
architectural level. This of course is done by the CPU to maintain the semantic of the program.

2.1.5 Speculative Execution

Speculative execution is one of the most critical optimizations of modern CPUs. There are several
situations in which the microarchitecture might require to stall due to events such as a slow
branch resolution. While with out-of-order execution the pipeline is filled with an independent
stream of instructions that are found downstream, during speculative execution the CPU tries
to guess which is the outcome of the stalled instruction and based on that guess it will start to
execute dependent instructions to the one that has stalled. By doing so, the instruction stream can
continue in the hope that the guess done by the CPU by using one of the many predictors available
is correct. If the guess was not correct, the instructions executed are squashed and the CPU will
restart the execution with the correct result. In the case in which the guess is correct thought, the
CPU has saved several CPU cycles by not waiting the resolution of the stalled instruction.

2.1.6 Multiprocessing and multithreading

In the early stages of computing, most of the performance was obtained by raising the clock
frequency of the CPU. However, due to physical limitations such as heat dissipation, since the late
90s two new techniques are introduced to obtain instruction level parallelism: multiprocessing
and multithreading. In the first, the microarchitecture is equipped with multiple cores that are
able to run more processes at the same time. In the second, each core is able to run different
threads of the same program in parallel which allows to explicitly exploit the parallelism of several
operations that would be otherwise sequentially executed within the context of a single program.
A key difference between multiprocessing and multithreading is that in the case of multithreading
the two threads might share several internal structures of the same core while that is not the case
for two processes running on different cores.

2.2 Transient execution attacks

Transient execution attacks exploit a new class of vulnerabilities, targeting a particular microar-
chitectural CPU design with specially crafted software. These attacks leverage known attack
vectors such as side channels, but go much further by combining them with vulnerabilities at the
microarchitectural level. Numerous variants of transient execution attacks have been disclosed
since the beginning of 2018.

Transient execution attacks are commonly divided into two major families: Speculation-based
and Fault-based [9]. The Speculation-based family includes the various Spectre variants that
leverage speculative execution to achieve data exfiltration. I refer to this family of attacks as
Speculative Execution Attacks. The Fault-based family instead, comprises of all the Meltdown
variants that rely on bugs in the way the CPU handles faults and out-of-order execution to achieve
similar results.

2.2.1 Fault-based attacks

The Meltdown family of attacks exploits bugs within the CPU. During a Meltdown attack, the
attacker tries to perform operations speculatively that are not allowed due to privilege boundaries.
Meltdown relies on the fact that faults are handled by the CPU only when the faulty instruction
retires, leaving the out-of-order execution to continue across privilege boundaries before the fault
is registered. This can allow an attacker to create a cache side channel with data retrieved from
a higher privilege level through out-of-order execution. Each variant of Meltdown exploits a
different fault type.

While these attacks are powerful and relatively easy to perform, they are easily fixable and
meant to disappear in future iterations of the CPU, i.e., they are less interesting from the research
point of view.

2.2.2 Speculation-based attacks

In modern CPUs, speculative execution is employed in several situations to boost performance
and avoid bottlenecks in the execution pipeline. For instance, whenever a conditional branch is
encountered in the instruction stream and one of the operands is not readily available, the CPU

speculates the result of the conditional branch and continue to execute further instructions. When
the uncached operand is finally loaded from the main memory and the conditional branch can
resolve, the CPU verifies the correctness of the guess and either commit and retires the speculated
instructions, if the guess was correct, or rollback otherwise. Similarly, speculative execution is
also triggered when the destination of an indirect call is not cached.

Spectre [4, 10] was the first to shows that whenever a mis-speculation take place, the CPU
might execute code that access sensitive data leaving side-effects in the micro-architecture. Such
side-effects, that before were considered not accessible from outside the micro-architecture, can
actually be observed through a side-channel. A critical factor for the feasibility of these attacks is
that the attacker can force such mis-speculation through training of the particular predictor unit
that is involved in the attack.

Speculative execution attacks can be further classified according to where the training of a
predictor occurs. In particular, I define the following relevant configurations: i) same address-space
(sAS) where training occurs in the same address space as that of the victim process, or ii) cross
address-space with simultaneous multi-threading (cHT) where training occurs in a separate process
running on the same physical core, or iii) cross address-space without simultaneous multi-threading
(cAS) where training occurs between two processes running interleaved on the same physical
core. Note that the cHT setting is a setting where attacker training and victim speculation occur
in temporal colocation (different logical core, same time), whereas in the cAS setting they occur in
spatial colocation (same logical core, different time). These settings are important because several
attacks and mitigations rely on them. Thus, considerations on the specific setting must be taken
into account in the threat model when evaluating the security posture of a system.

2.2.3 Speculative Execution Attacks Phases

Speculative execution attacks can be decomposed into the following five distinct phases:

I) Prepare side channel: In this phase, the CPU performs operations that will increase the
chances of the attack succeeding. For instance, the attacker can prime caches to prepare for
a prime-and-probe [11] cache side channel measurement, make sure important target data
is flushed, or ensure that the attacking thread and victim thread are co-located.

II) Prepare speculative execution: In this phase, the CPU executes code that will allow
speculative execution to start. This is code that is typically executed within the context of
the victim.

IIT) Speculative execution start: In this phase, the CPU executes an instruction whose outcome
decides the next instruction to be executed, such as a conditional branch instruction. Between
the time window where this instruction is issued and when it is retired, modern CPUs guess
the outcome of the branch to avoid stalling the pipeline, and execute code speculatively.
This is known as speculative execution [12].

IV) Speculative execution, side channel send: In this phase, the CPU executes (but does not
retire) instructions that will result in a micro-architectural state change.

V) Side channel receive: In this phase, the CPU executes instructions that transform the
micro-architectural state change that occurred in the previous step into an architectural
state change.

2.3 Privilege boundaries and attack impact

The core element that turns transient execution into an attack is the breach of a privilege boundary
that is established through hardware isolation support by the CPU. These privilege boundaries
typically aim to provide confidentiality and integrity of the data residing within the boundary (i.e.,
preventing data from being read or modified directly from outside the boundary). All accesses to
such data are mediated by code running within the privilege boundary, and that code may only be
invoked from a lower privilege through well-defined entry points.

In the case of currently known speculative execution attacks, the attacker’s aim is limited to
breach confidentiality of data residing beyond the privilege boundary by either accessing arbitrary
data or leaking specific metadata, such as pointer values, of the running program. For instance,
privilege boundaries that can be bypassed by some known speculative execution attacks are:

« kernel vs. user-mode code

« hardware enclave (SGX) vs. user-mode or kernel-mode code

« sandboxed code in the same process, for example JavaScript JIT code

« processes-to-process boundary

« remote node to local node boundary

I note that code at each speculative execution attack phase previously described (Section 2.2.3)
can potentially be run either in the higher privileged mode (victim-provided code) or lower
privileged one (attacker-provided code).

2.4 Defenses

Several mitigations have been developed to protect against transiet execution attacks. Some of
these mitigations repurpose existing instructions or sequence of instructions to block speculative
execution in sensitive areas of the code. To this category belong memory fencing instructions
(e.g., lfence), brancheless masking [13], and Retpoline [14]. Others, instead, are new hardware
features that hardware vendors introduced in new iterations of the CPU. Changes are also made
at the operating system level, including the re-design of entire subsystems.

2.4.1 Memory Fencing

Through the application of serialization instructions, such as Ifence on Intel, it is possible to force
the CPU pipeline to wait for prior instructions to retire and, as a consequence, to block speculation
and related Spectre attacks. Such a pipeline interruption is an expensive operation, therefore
fencing instruction should be placed carefully either manually or at compile time only where
really needed. For instance, the Linux kernel uses manually instrumented code, if the Spectre
mitigations are enabled.

2.4.2 Branchless masking

Branchless masking is a mitigation against Spectre-PHT attacks to harden load instructions that
are gated by a condition. The technique involves introducing a data dependency (usually called
mask) on the condition through a set of instructions which set the mask to zero in case the
condition is false (and to unsigned negative one otherwise). The mask is then used to zero out
pointers or array indices before performing the load when invalid. Masking is for example used in
the Linux kernel [15] to block Spectre-PHT whenever a value coming from userspace is used as
an index for an array access. It is also available as a compiler option (Speculative Load Hardening
(SLH) [16]) to instrument conditional branches with control-flow dependent pointer masking.

2.4.3 Retpoline

As an answer to Spectre-BTB, the Retpoline [17] compile-time mitigation replaces indirect branches
with ret instructions to prevent branch poisoning. This method ensures that return instructions
always speculate into an endless loop through the RSB.

2.4.4 KPTI

KPTI mitigates Meltdown-US and fortifies KASLR. KPTI is based on KAISER [9] (short for Kernel
Address Isolation to have Side-channels Efficiently Removed). If KPTI is enabled, whenever user-
space code is running, Linux ensures that only the kernel memory pages required to enter and
exit syscalls, interrupts and exceptions are mapped. With no other pages mapped, KPTI prevents
the use of kernel virtual addresses from user-space because they cannot be correctly translated.

2.4.5 Indirect Branch Restricted Speculation

Indirect Branch Restricted Speculation (IBRS) [18] prevents indirect branch predictors executed in
privileged code from being trained by less privileged code (i.e kernel-space cannot be influenced by
user-space). This also includes the case of attacks from another logical core on the same physical
core (cHT).

2.4.6 Indirect Branch Predictor Barrier

Indirect Branch Predictor Barrier (IBPB) [19] prevents code that executes before it from affecting
branch prediction for code that executes after. When enabled, an IBPB barrier runs across user
mode or guest mode context switches. In this way, a different user cannot attack a process of
another user running on the same machine. On Linux machines, IBPB can be conditionally or
fully enabled: in the first case, the barrier is raised only when switching to processes that request
it using seccomp or prctl.

2.4.7 Single thread indirect Branch Predictors

Single Thread Indirect Branch Predictors (STIBP) [20] splits the branch predictor across sibling
threads of a core, removing the attack vector constituted by a process training the predictor of a
co-located victim process. This prevents attacks like Spectre-BTB in the cHT setting.

10

2.4.8 RSB filling

RSB filling blocks Spectre-BTB and Spectre-RSB in the cAS setting. It flushes the RSB whenever
the CPU switches across privilege levels. For instance when the CPU switches from usermode
to kernel mode the RSB might contain poisoned entries introduced by the attacker which might
affect its speculative control flow. The process of RSB filling removes any such entry.

2.4.9 SSB mitigation

When software-based mitigations are not feasible (such as inserting an Ifence instruction between
the store and the load instructions) for Spectre-STL, some CPUs support Speculate Store Bypass
Disable that can be used to mitigate speculative store bypass. When SSBD is set, loads will not
execute speculatively until the address of older stores are known.

2.4.10 PTE inversion

PTE inversion is used to block Meltdown-P attacks. When a page table entry points to a non
present page, the upper address bits are inverted so that an access to such entry resolves to
uncacheable memory access. Given that Meltdown-P can only exfiltrate data from L1 cache,
forcing the address translation to return an uncacheable address closes the attack vector.

2.4.11 VMC conditional

VMC conditional cache flushing is adopted on virtualized environments. The mitigation flushes
the L1 cache at every VMENTER instruction. This way secrets possibly stored in the cache are no
longer accessible via the Foreshadow-VMM attack.

11

12

Chapter 3

Related Work

3.1 Speculative Execution

Optimizing CPU instruction throughput through speculative execution has been extensively
analyzed and implemented in the 1990s [21, 12, 22]. For information about the microarchitecture
of CPUs with respect to out-of-order and speculative execution, I mostly have to rely on the
material provided by the CPU manufacturers [23, 24, 25]. Unfortunately this material often
just provides software performance optimization related aspects, not providing details on how
mechanisms such as the branch predictor work. Agner Fog’s work [26] sheds light on those details,
providing detailed information backed by a substantial amount of experimental research on the
microarchitectural aspects of CPUs. This information is leveraged in processor simulators such as
gemb [27].

3.2 Cache Side Channels

Many speculative execution attacks variants rely on cache side channels to infer the memory
contents accessed by speculative execution. Cache side channels have been extensively studied:
First, Tromer et al. introduced both the “evict-and-time” and “prime-and-probe” techniques to
efficiently perform a cache attack on AES [11]. Prime and probe is a popular technique, which was
also used for certain speculative execution attacks variants. “Flush-and-reload” [28] is a technique
that allows for higher precision and is used in NetSpectre. Recently, other techniques such as
“flush-and-flush” [29] and “prime-and-abort” [30] were presented. Flush and flush leverages the fact
that clflush executes faster in case of a cache hit. Prime and abort makes use of Intel’s transactional
memory mechanism to detect when an eviction has happened without the need to probe the
cache.

3.3 Speculative Execution Attacks

Speculative execution attacks comprise those leveraging microarchitectural components such as
the Pattern History Table (PHT) for Spectre v1 [10], the Branch Target Buffer for Spectre v2, the
Return Stack Buffer (RSB) for Ret2Spec [31] and Spectre returns [32]. Both BTB and RSB attacks

13

are cases of speculative control flow hijacks, i.e., they provide the ability for an attacker to steer
speculative execution to an arbitrary location. Varied and powerful attacks leveraging the BTB for
speculative control flow hijacks have been demonstrated, in combination with port contention-
based, instruction cache-based, or BTB-based side channels [33, 34]. In Spectre v1.1 [35], Kiriansky
and Waldspurger point out that speculative overwrites of backward edges lead to speculative
control flow hijacks.

In practice, BTB gadgets are hard to find, thus attacks have only been shown to be practical if
the gadget is injected (e.g., by loading attacker-controlled eBPF bytecode into the kernel). The
idea of chaining speculative gadgets in a way similar to ROP was suggested shortly after the first
publication of Spectre attacks. Some publications have referred to the same idea [35, 33], the
former only briefly mentioning speculative ROP attacks but practical aspects are neither discussed
nor experimented on.

Netspectre [36] introduces a victim data eviction technique based on coarse-grained cache
eviction. The method, Thrash+Reload, is a remote variant of Evict+Reload [37]. The attacker starts
a large file download from the victim via a network interface. On the victim’s side, this action
results in victim data eviction with a probability which depends on the file size. Thrash+Reload
applicability is limited to scenarios where cache thrashing does not compromise the attack.

3.4 Mitigations

Since the first speculative execution attacks have been disclosed in early 2018, different mitigations
have been proposed to prevent each variant. Some mitigations are introduced at hardware level
meanwhile others are software-based. Many of these mitigations target Spectre v2 type of attacks,
meanwhile no software-transparent mitigation has been introduced for Spectre v1.

The available software-based Spectre v1 mitigations consist in either deploying a serializing
instruction (e.g., Ifence) around each sensitive bounds check or, alternatively, masking the index
used for accessing arrays [13, 38, 35, 39].

While [fence is an effective mitigation, it incurs huge performance penalties if widely applied.
Static analysis tools have been proposed to search for sensitive code patterns. One example is the
Linux kernel where vulnerable code is instrumented on a case by case basis either through manual
audit or automatic tools (e.g., smatch [40]) detection [41]. The drawback of current available tools
is that they target Spectre v1 code patterns such as array-out-of-bounds cases only and therefore
are not useful in the general memory corruption case (where an overwrite of a control-flow
influencing value can occur for any other mispeculation). Due to the high overhead, big projects
like JavaScript engines deployed alternative techniques against Spectre v1 such as diluting timing
precision, disabling concurrent threads to prevent homebrew-timers and masking pointer accesses
to prevent speculative out-of-bounds accesses [42, 43, 44].

For Spectre v2 instead, there are software and hardware mitigations. The software mitigation
currently available is Retpoline [14]. This mitigation targets indirect calls and indirect jumps and
prevents them from being speculatively executed by trapping speculation within a loop. As in
the barrier cases for Spectre v1, Retpoline requires code modification and therefore each program
has to be recompiled to enforce such mechanism. Linux has deployed Retpoline in the kernel as
mitigation for Spectre v2.

On the hardware side, Intel published three major protections: i) Indirect Branch Restricted

14

Speculation (IBRS) [18], which prevents speculation of indirect branches using target values
computed using lower privileged predictor modes, ii) Single Thread Indirect Branch Predictors
(STIBP) [20], which prevents Branch Target Buffer (BTB) poisoning from sibling threads, and
iii) Indirect Branch Predictor Barrier (IBPB) [19], which ensures that code before a barrier does
not influence the behavior of the code after. IBRS and IBPB are meant to protect higher privileged
code from lower privileged code. The only mitigation that provides protection within the same
privilege level is STIBP, which is not enabled by default for performance reasons.

Furthermore, Intel announced as part of its Control Flow Enforcement (CET) extension, the
future introduction of a new mitigation that will constrain the target of near indirect jumps and
calls to only ENDBRANCH instructions. Based on the release specifications, these constraints
should also apply during speculative execution. Therefore, this mitigation reduces the number of
possible gadgets where speculative execution can be redirected to during branch target injection
attacks. For SPEAR attacks, this mitigation applies for the forward edge overwrite case, where
it should restrict possible speculative control flow hijack targets. For the backward edge case,
Intel has implemented a shadow stack which, if adequately enforced during speculative execution,
should stop all SPEAR backward edge overwrites.

3.5 Safe Speculation Designs

In addition to mitigations that aim to protect already existing systems, several new design proposals
have been presented for future architectures to prevent speculative execution attacks.

A line of research concentrates on analyzing the data flow within the CPU pipeline and
preventing unsafe operations from leaving observable effects upon misprediction. NDA [45]
restricts speculative data propagation that follows an unresolved branch (potential control flow
misprediction) or unresolved store address (potential memory dependence misprediction). STT [46]
selectively forward secrets based on a speculative taint tracking system. Dolma [47] presents a
lightweight speculative information flow scheme with secure performance optimizations. SPT [48]
is based on the principles that a piece of data can be speculatively leaked if it was already
leaked during non-speculative execution, otherwise it would delay the transmitter operation.
GhostMinion [49] instead presents Strictness Ordering, a permissive contraint system that allows
all the information flows where non-committing speculative operations cannot leak to those that
do commit.

Another set of work, instead, proposes new cache designs. InvisiSpec [50] removes cache covert
and side channels by confining Unsafe Speculative Loads (USL) into a speculative buffer until the
USL is considered safe and the changes can be exposed to the cache hierarchy. In a similar fashion,
CleanupSpec [51] prevents the cache side-effects, however, its strategy differs from InvisiSpec
because it allows the USL to modify the cache. CleanupSpec applies an Undo operation only when
misprediction is detected, therefore limiting performance overhead. Conditional Speculation [52]
and Sakalis et al. [53] block during speculation memory accesses that do not hit the L1 cache, as
the L1 accesses are safe. MIRAGE [54] instead introduces a randomized approach in selecting
the eviction candidates to eradicate set-conflicts that lead to cache attacks. Finally, DAWG [55]
proposes a mechanism to partition the caches into domains to provide isolation.

15

16

Chapter 4

Debugging Speculative Execution

A developer’s view of the CPU when writing a low-level program is defined by the CPU’s instruc-
tion set architecture (ISA). The ISA is a well-defined, stable interface the developer can use to
access and change the architectural state of a CPU. The software is in full control over memory,
registers, interrupts and I/O. At the same time, the CPU has a lower-level state of its own — the
extra-architectural state of the microarchitecture, commonly referred to as the microarchitectural
state. In general, the ISA provides no direct access to the CPU microarchitecture, allowing the
microarchitecture to evolve independently while keeping the programming interface backward
compatible. The microarchitecture of a CPU is subject to frequent changes between generations
and models, and is different even among vendors of a given ISA. A CPU’s microarchitecture
typically also implements security controls, such as process isolation.

Recent works [4, 5, 6] have shown how security controls can be bypassed by submitting
carefully-crafted inputs at the level of the ISA interface. These attacks exploit undocumented
behavior at the microarchitectural level, and have been discovered through reverse engineering
and trial-and-error. The full breadth of this class of attacks is not entirely understood, owing
to the fact that details about the microarchitectural level of modern commercial CPUs are not
publicly available. The research community cannot provide complete answers to questions about
the existence of new attacks and the effectiveness of defenses.

More precisely, I identify two important related requirements: 1. When developing new attacks,
it is often required to analyze and debug parts of the proof-of-concept code easily. For memory
corruption, this would be achieved with a debugger. An equivalent for speculative execution
attacks, that inspects microarchitectural state directly, is needed. 2. When testing speculative
execution mitigations, the current option is either to attempt a proof-of-concept attack, or to
trust the CPU flags and kernel configuration that are provided. A more granular testing tool that
directly inspects microarchitectural state would be beneficial to gain confidence in the mitigations
being properly implemented and enabled.

In this work, I propose a tool, SPECULATOR, with these two requirements in mind. SPECULATOR
records or infers microarchitectural behavior by using performance counters, supports incremental
analysis (evolution of microarchitectural state over a code snippet), runs on both Intel and AMD
CPUs, and enables concurrent execution (interaction of two threads in an SMT environment).

This work makes the following contributions:

+ A new performance-counter-based method and tool, SPECULATOR, to aid in designing attacks

and mitigations.

17

« Insights into microarchitectural behavior relevant to attacks and defenses: I successfully
verify the return stack buffer size, that nested speculative execution works, that speculation
does not span across system calls and that clflush has no effect during speculation. I also
measure the window size for indirect branches, indirect control flow transfers and store
to load forwards. Finally, I document the effects of page permissions, memory protection
extension and special instructions (e.g. lfence) on speculative execution.

» Examples of using SPECULATOR against attacks and mitigations.

+ An Icache attack proof-of-concept: uses the instruction cache as a side channel, as part of a
BTI attack to leak one bit of information at a time from a victim program.

« A Double BTI attack proof-of-concept: uses the branch target buffer (BTB) as a side channel,
as part of a BTI attack to leak one byte of information at a time.

« An Analysis of current branch target injection mitigations on Linux, showing that both
attacks work on user space programs with default settings.

4.1 SPECULATOR

Speculative execution is not well-documented compared to other features of modern CPUs. Being
part of the microarchitecture, its implementation details are hidden behind the ISA and subject to
optimization, which manufacturers keep to themselves.

However, understanding the internals of speculative execution is key to comprehending the
limits of Speculative Execution Attacks (SEAs), and to designing adequate mitigations and defenses
against SEAs. For this reason, I have designed and implemented SPECULATOR, a tool whose purpose
is to reverse-engineer the behavior of different CPUs in order to build a deeper understanding of
speculative execution. SPECULATOR aggregates the relevant sources of information available to
an observer of speculative execution, chief among them CPU performance counters and model-
specific registers, so that the behavior of different code snippets can be observed from a speculative
execution standpoint. In this section, I describe the design and implementation of SPECULATOR.

4.1.1 Performance Monitor Capabilities

Modern CPUs provide relevant information through the performance counter interface. This
interface is offered by most manufacturers, and it exposes a set of registers (some fixed and
some programmable) that can be used to retrieve information on various aspects of the execution.
Through these registers, counters for events or duration related to microarchitectural state changes
such as cache accesses, retired instructions, and mispredicted branches, are made available to
the developer. Events are manufacturer- and architecture-specific. This interface was originally
made available to provide a method for developers to improve the performance of their code. The
interface is typically used as follows: through a setup step, developers can choose which events will
be measured by programmable counters out of a wide set of supported ones. Measurements can
be started and stopped programmatically in order to carefully control the events of which precise
sequence of instructions is being measured. Setting up, starting, and stopping measurements often
requires supervisor mode (ring 0 in x86 nomenclature) instructions, whereas accessing counters is
usually available in user mode.

SPECULATOR builds on top of performance counters to observe the nature and effects of

18

speculative execution. One challenge with this approach is that the performance counters interface
was not designed with this objective in mind. One of the contributions of this dissertation is the
identification of effective ways of using the interface, and a useful set of counters to accurately
infer the behavior of speculative execution.

4.1.2 Objectives

The main objective of SPECULATOR is to accurately measure microarchitectural state attributes
associated to the speculative portion of the execution of user-supplied snippets of code. Accuracy
refers to the degree with which the tool is capable of isolating the changes to the microarchitectural
state caused by the snippet being analyzed from that of the tool itself and the rest of the system
(e.g., the OS or other processes). An incomplete list of SPECULATOR observables are 1. which parts
of the snippet are speculatively executed, 2. what causes speculative execution to start and stop,
3. what parameters affect the amount of speculative execution, 4. how do specific instructions affect
the behavior of speculative execution, 5. which security boundaries are effective in the prevention
of speculative execution, and 6. how consistently CPUs behave within the same architecture and
across architectures and vendors. The creation of a new tool is justified because none of the
existing ones, such as perf_events [56] or Likwid [57], provide the required information with
sufficient accuracy.

More precisely, perf_events has two modes of operations, sampling and counting. During
sampling, there is no way to have precise quantitative information about code execution, and
therefore it is not suitable for my purpose. When evaluating perf_events’ counting mode, I
experienced for very small snippets a certain level of overhead (in the order of 500 pops). This
overhead was caused by the perf_event design decision of integrating all its operations (e.g., start
counters, stop counters) in the kernel. Since the test snippets are 20-30 instructions long on
average, this overhead completely prevents inferring any kind of relevant behavior.

Likwid operates instead in user space just as SPECULATOR, instrumenting the counters through
the MSR register. However, its design only allows system-wide measurements and does not
provide the same flexibility of handling the counter as the snippet progresses in its execution.

I also considered other tools and libraries such as Oprofile [58], Perfmon2 [59], Perfctl [60],
and PAPI [61]. Unfortunately, all of these possess either the same issues of measure inaccuracy or
lack of flexibility, or otherwise are outdated and unmaintained. Performance comparisons among
some of these interfaces are provided by Zaparanuks et al. [62] and Weaver [63].

Another SPECULATOR objective is to provide tooling for the generation and manipulation of
code snippets. The ability to inspect individual snippets and snippet groups during speculative
execution allows the user to focus on combinations of instructions that are relevant for specific
use-cases. Additionally, support for multiple platforms enables the inference of generalizable facts
about speculative execution.

4.1.3 Design and Implementation

Figure 4.1 describes the architecture of SPECULATOR and its three main components: a pre-
processing unit, a runtime unit called the Monitor, and a post-processing unit.

The task of the pre-processing unit is to compile the provided input into the appropriate
execution format, and to introduce the instrumentation required by the performance monitor

19

=

S

|

D
x4

{:i5 S PMC Test PMC
JSON 1 =] Init|| Execution |[Read

N o CPU-0 6
Snippet] Aggregate
Generation 2 3 4 Results
——)] (Speculator W

5 —
F Lson] Monitor —
B Tl) 7
PRE -PROCESSING RUNTIME POST-PROCESSING

Figure 4.1: The architecture of SPECULATOR. A template with the speculative execution trigger
and a list of instructions to be speculatively executed are the input to the code generation. The
code snippets are run repeatedly under supervision of the speculator monitor, which captures the
event specified in the configuration file. Finally, the measurements are post-processed to present
a final report on speculative execution behavior.

interface to be able to observe the value of the selected set of hardware counters. Input can be
provided as a snippet of C or assembly code, or as a template for the generation of code snippets.
Code snippets are generated from templates in an incremental fashion, resulting in the output
of multiple snippets with an increasing number of instructions taken from a pre-compiled JSON
list. Each instruction is inserted by the SPECULATOR snippet generator in the specific location
defined in the source template (Step 1 in Figure 4.1). The introduction of such “incremental”
snippets is justified by the fact that the addition of a single assembly instruction may trigger
optimizations that — while preserving the expected program semantics — alter the behavior of
the CPU at a microarchitectural level and affect the nature of speculative execution. Having
incremental snippets helps to verify when optimizations are triggered and take them into account
during the analysis of the results.

After the generation of the executable (also referred to as the test application), the SPECULATOR
runtime is invoked on each of the generated outputs (Step 3). To ensure that the Monitor does
not perturb the measurements, the process executing the snippet and the monitor are pinned on
different cores. The Monitor is responsible to configure the counters on the core used by the test
application (Step 2). As previously mentioned, there are many programmable counters that can be
used so I provide a configuration file that can be loaded into SPECULATOR to easily switch among
them.

Once the Monitor has set up the environment, it loads and executes the snippet in a separate
process, and waits for it to complete (Step 3). The test application prologue and epilogue will
interact with the environment created by the Monitor, resetting, starting and stopping the counters
as needed. The counters related to the core where the test application runs are stopped by the
test application just before termination. When the test application terminates, the Monitor will
be signaled by the Operating System. At this point, the Monitor can retrieve the values of the

20

counters from the core where the test application runs (Step 4) and store them in a result file
(Step 5). The Monitor can be configured to run a specific test N times. In this case, the result file
will contain the values of each run.

In some cases, it might be required to run two processes in an attacker and victim scenario. In
this case, SPECULATOR is able to run two tests in a co-located manner to analyze the effects of a
process influencing another, like in the case of Spectre v2 or DoubleBTI [33]. SPECULATOR collects
different counters for the attacker and the victim. Under this configuration, SPECULATOR performs
no synchronization between the two processes.

Once the tests results are collected from the Monitor, they are handed to the post-processing
unit (Step 6). This unit aggregates the results from multiple runs by computing statistics (e.g.,
mean and standard deviation) and by removing clear outliers.

4.1.4 Triggering Speculative Execution

The SPECULATOR user supplies as input a code snippet to determine how the CPU behaves when
speculative execution takes place. I note that in the absence of branch misprediction, instructions
that are speculatively executed will eventually retire and there should be no undesired microarchi-
tectural side-effects. The more interesting case for the SPECULATOR user is a snippet containing a
branch, or other speculative execution trigger that the CPU does not predict accurately, leading to
the speculative execution of instructions that will not retire. In this scenario, SPECULATOR helps the
user detect which instructions the CPU executed and how they influenced the microarchitectural
state.

To automate the generation of test cases, SPECULATOR provides the user with a series of
templates that can be used to reproduce the various speculation triggers. For instance, SPECULATOR
contains templates to study Branch Target Injection (BTI) cases including attacker and victim,
or branch-based templates to study particular series of instructions, or templates that causes ret
instructions to be speculated like in the Return Stack Buffer case, and so on.

An example using a common branch as trigger is described in Figure 4.2. The template is used
as follows: the user supplies a snippet, expecting i) it to be speculatively executed, ii) that none of
its instructions will retire, and iii) that SPECULATOR will report counters relating to its execution.
To achieve this, the template prefixes the snippet supplied by the user with a branch instruction.
The template begins with a setup step that trains the branch predictor not to take that branch.
After the branch predictor is trained, the program state is set to require the branch to be taken to
ensure that the snippet will be speculatively executed and that none of its instructions will retire.
The template then starts the performance counters that were previously setup by the Monitor and
executes the branch, after which it stops performance counters. In order to prolong or shorten the
speculative execution of the user snippet, the condition variable of the branch can be placed in
registers or memory. On the microarchitectural level, a variable placed in memory can also be
cached in one of the levels of the cache hierarchy.

4.1.5 Speculative Execution Markers

In the context of SPECULATOR, I are mostly interested in determining the behavior of the CPU when
instructions that are speculatively executed do not retire. A first natural question is whether non-
retired instructions were speculatively executed at all and, if so, how many of them. An accurate

21

t start
Setup counters

not taken taken

snippet

stop
counters

Figure 4.2: Flow chart of one of the experiment template used in SPECULATOR. The setup code
brings the branch predictor in a specific state that will cause the later branch to mispredict and
speculatively execute the code snippet consisting of the instructions. The speculative execution of
the instructions is measured by the PMC infrastructure, which is triggered by the corresponding
start/stop instructions indicated in the flow chart.

detection of these events is (perhaps surprisingly) not trivial. Indeed, the CPU strives to undo
most observable architectural side-effects from non-retired speculatively executed instructions.
However, as I know from the Spectre and Meltdown works [5, 6], not all side effects are undone.
One possible approach to detect non-retired speculative execution would be to rely on the side-
channels exploited in these works. This approach has several shortcomings: it is noisy, i.e., it
has a relatively low single-run detection accuracy;, it is costly to setup and read, and it requires
otherwise unnecessary changes to program observables.

A more effective approach is based on markers of speculative execution, that is, special instruc-
tions or sequences thereof (which I will refer to as markers) that are detectable by performance
counters even when they do not retire. The approach requires appending the marker to the snippet
which is fed as input to SPECULATOR, and ensuring that there is no other occurrence of the marker
in the snippet. If SPECULATOR detects the marker, the detection can be used as proof that the CPU
executed the snippet.

The choice of which markers to use is manufacturer- and architecture-specific, given that not
all CPUs expose the same set of counters. In general, the marker must cause a microarchitectural
event that is detectable by a performance counter irrespective of its retired status. For example,
counters that measure issued or executed instructions of a specific type irrespective of their retired
status constitute a good marker. The selection of which counter to use on a given architecture
requires manual inspection of the CPU architecture programmer’s manual. In what follows, I
report my findings on the available markers for Intel processors:

UOPS_EXECUTED.CORE/THREAD counts the number of piops executed by the CPU. It can be
used to report the exact number of pops that were executed out of the user-supplied snippet by
subtracting the number of pops that retire in the template (the branch and the instrumentation
to stop performance counters) from the output value of the counter. This counter is subject to
p-fusion of instructions and does not count instructions that do not require execution such as

22

NOP. An exception to that rule is FNOP, which is tracked by this counter as well.

UOPS_ISSUED.SINGLE_MUL belongs to a group of counters triggered only by a specific set
of instructions. This counter is fired whenever a single-precision floating-point instruction that
operates on the XMM register is issued. This means that such an operation can be inserted at
the end of the user-supplied snippet to verify whether this counter is incremented or not. This
counter has been dropped by Intel on most recent CPUs (e.g., Skylake) and therefore its usage is
limited across platforms.

Similarly to UOPS_ISSUED.SINGLE_MUL, UOPS_ISSUED.SLOW_LEA is triggered by only a
specific set of instructions. It counts LEA instructions with three source operands (e.g., lea rax,
[array+rax™2]). Unfortunately, certain operations such as clflush are considered by the CPU as
SLOW_LEA operations, so extra care must be taken to subtract any number of those present
outside of the user-supplied snippet.

LD BLOCKS.STORE FORWARD is incremented for each store forward that result in a failure.
An example of a sequence that triggers this kind of situation is shown in Listing 1.

mov DWORD[array], eax
mov DWORD[array+4], edx

movg xmmO, QWORD[array]

Listing 1: Failed store forward example

The following markers are available on the AMD Zen architecture: DIV_OP_COUNT, counting
the number of executed div instructions. NUMBER_OF MOVE_ ELIMINATION AND SCALAR-
_OP_OPTIMIZATION, like LD _BLOCKS.STORE _FORWARD, does not track the execution of an
instruction, but rather the effect of a certain instruction sequence. In this case, it tracks in how
many cases move elimination was successful.

4.2 Using SPECULATOR: Dissecting the microarchitectural
world

Using SPECULATOR, I explore the microarchitectural behavior of modern CPUs. Our goal is twofold:
I aim to investigate several speculative execution properties, as well as test new PoC attacks
and available mitigations in a deterministic manner using the speculative execution markers
introduced in Section 4.1.5.

The results that I uncover are applicable to previously discovered and new attacks, and are
also of independent interest. Since some of my findings are hardware-dependent, I also show the
differences based on the underlying CPU architecture (Table 4.1).

4.2.1 Return Stack Buffer Size

The first set of experiments measures the size of the Return Stack Buffer (RSB). The RSB is an
internal buffer used by the CPU to predict where a ret instruction is returning to. Koruyeh et

23

Architecture CPU Design

Intel Haswell i5-4300U tock
Intel Broadwell i5-5250U tick
Intel Skylake i7-6700K tock
Intel Kaby Lake i7-8650U optimization
Intel Coffee Lake i7-8559U optimization
AMD Zen Ryzen 1700

Table 4.1: The CPUs per architecture I use SPECULATOR on. While Haswell and Skylake are new
designs - “tocks” in Intel nomenclature — Broadwell is a “tick”, a die-shrink of Haswell. Kaby and
Coffee Lake are instead optimized versions of Skylake design within the same die size

al [64] and Maisuradze et al [65] show how this buffer can be misused to perform speculative
execution attacks. I start with the RSB since information on its size is available and can be used to
validate the accuracy of SPECULATOR.

To perform the measurement, I design a test template similar to the one presented in [64]. The
test performs a call to a victim function. Whenever the CPU executes a call instruction, it pushes
the expected return address (the instruction after call) on the application stack (architecturally)
and in the RSB (microarchitecturally). The victim’s code further changes its return address to an
exit routine by manually overwriting the stack. This way, the code at the original return address
is only speculatively executed since at the microarchitectural level, the first entry in the RSB
is popped and execution (speculatively) continues at that address. In order to be able to detect
whether speculative execution takes place, a marker is inserted at this target.

Based on the described template, I generate a series of snippets that, between the call and ret,
have a call to a filler function that contains an increasing number of nested calls. For each of the
nested calls, an entry is added to the RSB. When the nested call stack depth is bigger than the
RSB size, the RSB loses the oldest entries. In this case, once the CPU speculates the last ret, it
has nothing to pop from the RSB because the previous nested call/ret consumed all the available
entries. In that case, I expect the CPU not to be able to speculatively execute my marker.

I report in Figure 4.3 and Figure 4.4 my results for Intel Kaby Lake and AMD Ryzen. For
Intel Kaby Lake, I observe that the marker is observable up to 14 nested calls. To count the slots
available in the RSB, I need to also consider the additional call to the filler function that contains
the nested calls. This results in a total of 16 entries in the RSB, which matches the value reported
by Intel for the Kaby Lake RSB size. Interestingly, after 15 nested calls the number of mispredicted
branches increases almost linearly, by one for each nested call added. This indicates that a second
predictor is used as fallback once the RSB cannot provide any more values.

Figure 4.4 shows the results for AMD Ryzen. After 30 nested calls, I observe the marker hit
to transition between 1 and 0.25. As before I need to account for the call to filler. The result for
the AMD Ryzen RSB size is 31. my result differs from the nominal value I expected from the
manufacturer specification, which is 32. With further research into the optimization manual [66],
I found that one entry is actually reserved for “pointer logic simplification”. Therefore, the
observed 31 entries is correct. On AMD, after the Return Address Stack (RAS) (the RSB in AMD
nomenclature) is emptied, I still observe a correct prediction 25% of the time and not 0 as seen for

24

Intel. This implies that the second predictor used can still predict correctly 25% of the time in this
particular setup.

7
w 61 —— Failed load to store forward
< Z: Mispredicted Branches
¥3-
© 2 -
E 1 1T -—-—F"'""""5"-"”>-- \
O_...I. LLLLLLLL |--.---.-|-----.-; I. RLLLLLLL |.--- | - - - - s
0 2 4 6 8 10 12 14 16 18 20 22
call stack depth
Figure 4.3: Return Stack Buffer test on Kabylake.
1.2
o 1.01
< 0.8-
$ 0.6-
© 0.4
€024 — div operation count —~ -
00 Sl fiireeestntaeercarearaiesrearainarfareirercareireiceres

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45
call stack depth

Figure 4.4: Return Stack Buffer test on AMD Ryzen.

4.2.2 Nesting Speculative Execution

An undocumented corner case that might affect the construction of attacks is when speculative
execution encounters conditional branches in its path. The questions I try to answer with this
experiment are “How is the speculative execution window affected by nested branches?”. And
“What is the overall behavior of the CPU when nested branches are speculated?”.

I use SPECULATOR to evaluate the case of nested branches. This experiment has multiple
potential outcomes: given two nested branches, an outer and an inner one, either i) the inner
branch is not speculatively executed until the branch condition on the outer branch is resolved,
or ii) speculative execution continues to the inner branch and beyond. In the second case, I are
interested in the speculative execution behavior if the inner branch is resolved while the result of
the outer one is still pending.

I design my experiment with three nested conditional branches, outermost to innermost, with
the branch conditions being independent of one another. The conditions are set up with decreasing
complexity, such that the outermost will take longest to resolve. I achieve this by involving an
uncached value that is subject to multiple expensive operations (divs) in the outermost branch
condition, a simple uncached value in the middle branch condition, and a cached value in the

25

innermost branch condition. As usual, I train the branch predictor for all branches in the setup
phase such that it is going to mispredict all targets in the measurement phase. To evaluate which
code paths are (speculatively) executed, I repeat the experiment multiple times with marker
instructions placed in the opposite branch target paths.

I performed this experiment on both Broadwell and Skylake, yielding identical results: in
both cases, nested speculative execution takes place, i.e., speculative execution continues along
the trained branch targets for all branches. Second, if a nested branch condition is resolved
before its parent branch and a misprediction has occurred, speculative execution picks up the
opposite branch target. If a parent branch is resolved, all mispredicted code paths, including nested
speculative execution, is canceled.

4.2.3 Speculative execution across system calls

An interesting case to analyze for new attacks is how speculative execution behaves in case the
attack spans between multiple privilege boundaries. The question I try to answer here is: “Does
speculative execution continue through instructions such as syscall and vmcall?”

I thus investigate whether speculative execution continues across the context switch from
user- to kernel mode. To this end I design a simple test scenario, where the speculatively executed
snippet issues a system call. For the system call itself I picked sys_getppid because of its low
complexity — an execution only amounts to 47 instructions. I use the counter for executed pops
and tune it to capture either just pops executed in user mode or kernel mode.

I performed the experiment on the Broadwell and Skylake microarchitectures with identical
results:

« The number of pops executed in user mode corresponds to the instructions before the system

call and does not increase with additional instructions added after the system call.

+ The number of pops executed in kernel mode does not increase compared to a baseline

measurement taken without speculative execution of the code snippet.
I conclude that a system call effectively stops speculative execution after the system call returns
from kernel mode. I further conclude that a speculative execution attack across the system call
boundary is not feasible on the tested Intel CPUs.

4.2.4 Flushing the Cache

The x86 instruction set provides a convenient, dedicated instruction to cause the CPU to flush
the cache line indicated by a memory address from all caches, clflush. It is very useful in settings
where an attacker can execute assembly instructions, as it allows easy eviction of data from the
cache.

I use SPECULATOR to investigate how clflush behaves when executed speculatively. To this end,
I create a snippet that first flushes the cache line corresponding to a value stored in memory and
then loads the value. This is shown at line 4 and line 8 respectively in Listing 2. I perform two runs,
one where the setup code warms up the cache by loading the value from memory (line 7) and one
where the value is left uncached. In both tests, within the speculated sequence, I place a clflush
followed by an Ifence instruction to stop the speculation, making sure that the final load is not
executed during speculation as well (line 15). I measure the execution cycles on both runs, which
shows a difference of over 160 clock cycles between the two settings. This is a clear indication that

26

while clflush is speculatively executed, it does not affect the cache until retired. Thus, during a
speculative execution attack, the attacker cannot extend the speculation window using providing
in its code a clflush on the speculation starter variable.

Another result I draw from this experiment is that, to make sure clflush is effective, it needs to
be combined with an instruction that stops speculative execution, such as [fence.

setup

.loop:
clflush[counter]
clflush[var]
1fence

mov eax, DWORD[var]
1fence

start counter

cmp 12, DWORD[counter]
je .else

clflush[var]
1fence

.else:
mov eax, DWORD[var]
1fence

stop_counter
inc DWORD[1]

cmp DWORD[i], 13
j1l loop

Listing 2: Clflush test snippet structure

4.2.5 Speculation window size

The speculation window size is determined by the clock cycles that it takes until a speculation
trigger is resolved. In this section, I provide my measurements of the speculation window for the
different triggers used in the Spectre v1, v2, and v4 attacks. To measure clock cycles I use the
facilities provided by the PMC of the respective platform: on Intel, a predefined counter tracks
elapsed clock cycles according to the same settings as the configurable counters; on AMD, the
APERF counter tracks elapsed clock cycles in general.

The theoretical upper limit of instructions that can be executed during speculative execution
is given by the size of the reorder buffer, which I evaluated in Section 4.3.4. In practice, it is
also limited by the execution ports and units available for executing those transactions. Thus, I

27

also investigate instruction sequences that do not lead to a bottleneck on those resources during
speculative execution.

Conditional branches.

Conditional branches are the speculative execution triggers used in Spectre v1 to check for an
out-of-bounds access to an array. The speculation window size depends on how fast the CPU
determines that the actual branch target differs from the information provided by the branch target
buffer. I place the conditional value that determines the actual branch target in different locations
and involve it in additional computation to investigate how this affects the size of the speculation
window. As a baseline, I measure how long the execution of the additional instructions takes. I
then measure how long the execution of the instructions together with the conditional branch
takes. The placement of the variable and the additional instructions on it affect the time it takes
the conditional branch to retire. All measurements are performed a thousand times. Note that
controlling the performance counters involves a system call. Since system calls stop speculation, I
can only measure how long the retirement of an instruction sequence takes.

As described by Agner Fog in [67], the APERF interface offered by AMD Ryzen for clock cycles
requires careful handling due to its scaling with the CPU frequency. Hence, since the measurement
technique differs between the two CPU vendors for this particular test, results for Intel and AMD
might not be directly comparable. However, while the post-processing of this dataset is different,
the test methodology used to gather it is the same.

Table 4.2 shows the results of this experiment. I see that complex instructions such as div,
which translates to multiple pops, widen the speculation window. The same is true for a cache
miss, when the CPU needs to fetch the data from main memory.

At the same time, access to cached memory contributes little to the speculation window
compared to a register access. Measuring a range from four to twelve cycles, the results for
Broadwell and Skylake are in accordance with Intel’s performance analysis guide [68] which states
four cycles as the average for an access to L1 and ten cycles for L2.

On AMD, I see even less impact between register and cached accesses. In addition, adding a
complex instruction on top of an access has a negligible effect on the speculation window size.

Indirect control flow transfer.

Indirect control flow transfers are the speculative execution triggers used in Spectre v2. The
speculation window size depends on how fast the CPU determines that the target in the branch
history buffer does not match the actual target. Table 4.3 shows the speculation window sizes
depending on the location of the indirect branch target.

Store to load forwarding,.

Modern CPU designs feature store and load queues, which capture the effects and dependencies
of corresponding load and store operations before the data is even written to or read from the
cache. This infrastructure allows for efficient store to load forwarding: if an instruction writes
to a certain memory address and a following instruction reads from that very address, the CPU
can leverage the result of the first instruction, which is written to the store queue, for executing
the second instruction. This avoids unnecessarily stalling the execution of the second instruction

28

Conditional branch Broadwell Skylake Zen

Register access 14 16 7
Access to cached memory 19 17 9
Access to uncached memory 144 280 321
Mul with register 19 19 2
Mul with cached memory 33 33 8
Mul with uncached memory 154 290 362
Div with register 35 41 17
Div with cached memory 34 39 30
Div with uncached memory 164 306 353

Table 4.2: Speculation window of a conditional branch depending on the type of instructions
needed to resolve the branch as well as the placement of the value involved in the condition,
measured in cycles.

Indirect branch target location Broadwell Skylake Zen

Register 28 22 24
Cached memory 41 34 35
Uncached memory 154 303 301

Table 4.3: Speculation window of an indirect control flow transfer, measured in cycles. The
speculation window size depends on where the target of the indirect control flow transfer is
stored.

until the first is retired. In a recent attack, this behavior has been used for a “speculative buffer
overflow” [69].

I are interested in the behavior a failed store to load forwarding causes. In this case, I deviate
from my default SPEcULATOR template and remove the branch instruction. Instead, I create a
snippet with a data dependency that is not detected by the CPU in a combination with a sequence
of store and load operations that triggers store-to-load forwarding.

Running the snippet in SPECULATOR reveals that store-to-load forwarding fails and the load
instruction is in fact executed twice. This means that a failed store-to-load forwarding also creates
a situation similar to speculative execution results being discarded because of a mispredicted
branch, although it provides a significantly smaller speculation window.

Spectre v4 (a speculative store bypass) makes use of speculative execution through store-to-
load forwarding. For this trigger I measure a speculation window of 55 cycles on average on
Broadwell. I also measure the speculatively executed instructions using FNOP, which provides us
with an upper bound for the speculation window in terms of instructions. I measure an average of
15 pops with a maximum of 23 pops (Figure 4.5).

Max speculation with optimized instruction sequence. During my experiments, I observed
multiple situations in which the CPU back-end stalled. For instance, the CPU could stall due
to exhaustion of execution units for a certain operation (e.g., MOV, MUL) or, for instance, data
dependencies of multiple operations where one or more data loads caused cache misses. In a

29

295 1 —— uops executed
uops retired

255 A
215 A
175 A

135 A

9541 ~

0 40 80 120 160
FNOPs injected

Figure 4.5: Speculation window of a store-to-load forward failure, measured in executed FNOPs
on Broadwell.

hypothetical scenario, I wanted to verify how many non-NOP executed pops the CPU speculates
within the maximum time window (e.g., access to uncached memory in combination with a DIV
instruction). Based on the layout of the back-end of my Broadwell CPU under test, to the best
of my abilities, I crafted an optimized sequence of instructions to account for the delay of each
operation and the available execution unit. my tests show that the maximum number of non-trivial
speculated instructions I could achieve was 160, with 187 being the maximum for FNOP.

4.2.6 Stopping Speculative Execution

Many instruction set architectures feature an instruction that stops speculative execution in the
sense that no following instruction is speculatively executed. On x86 (and x86_64), one such
instruction is [fence, short for “load fence”, the name reflecting its initial purpose of serializing all
memory load operations issued prior to this instruction. In addition to this behavior, it also works
as a barrier for speculative execution: the operational description in Intel’s manual [23] specifies
that Ifence waits on following instructions until preceding instructions complete.

I verify this behavior using SPECULATOR by creating a snippet with an [fence instruction
followed by an increasing sequence of regular instructions. As expected, the counter for executed
pops remains constant among the test runs irrespective of the number of instructions following
Ifence.

4.2.7 Executable Page Permission

Memory page permissions control access to memory regions at page-level granularity. As I have
seen with Meltdown and Foreshadow, such permission checks might be lazily evaluated after an
instruction is already executed, but before it is retired. Related work has so far focused on data
read or write access to memory pages.

In this test I focus on whether execute permissions set by the NX bit are enforced. The NX bit
is part of a hardware extension introduced by modern processors to mitigate stack-based code

30

injection exploits, among others. If the control flow of a program is diverted to a page without
execute permissions, the processor will trap into the kernel to handle the fault. This raises the
question of whether during speculative execution it is possible to execute instructions from a page
without such a permission set.

Our corresponding experiment sets up a branch misprediction with a following control flow
transfer to a non-executable memory region, to test whether instructions in it are (speculatively)
executed. I ensure that the data from the page is in the L2 cache during speculative execution and
the addresses are in the TLB. The result of the experiment is that the execute page table permission
is honored during speculative execution by all architectures I examined. This is even true if an
instruction spans over two pages: it will not be executed if the second page is set non-executable.

4.2.8 Memory Protection Extensions

Instead of performing bounds checks purely in software, Intel’s MPX instruction set extension [70]
available on the Skylake platform provides hardware support for both efficiently keeping track of
bounds information associated with pointers and corresponding spatial memory checks before
dereferencing pointers. Pointer bounds information is stored in memory and loaded to dedicated
registers before it can be used to check the upper bound using the bndcu and the lower bound
using the bndcl instruction. If a bound check fails, a #BR exception is raised and the CPU traps
into the kernel.

I used SPECULATOR to measure if and how much code following a bounds check instruction is
speculatively executed. The setup executes the regular code path without the bounds violation
for ten iterations and then fails on a bndcu twice. To measure the speculative execution window
size, I first used an increasing run of NOPs in conjunction with a terminating slow LEA marker
instruction. In this experiment, I measured that I speculatively execute the marker instruction for
a sled of up to 122 NOPs. In my second experiment, I used FNOP instead of regular NOP, which is
tracked by the UOPS_EXECUTED counter. As is shown in Figure 4.6a, in this case, the number of
executed pops increases up to a sled of 22 FNOPs and remains constant beyond.

4.2.9 Issued vs. Executed pops

Some of the counters that I adopt as markers (e.g., UOPS_ISSUED.SINGLE_MUL, UOPS_ISSUED-
.SLOW_LEA) count the number of pops that are issued, as opposed to executed. Since issued
pops are not necessarily executed, as is the case for the NOP instruction, I performed a dedicated
experiment to verify whether they are also executed. I use the template introduced in Section 4.1.4
and generate tests where the code snippet just contains an increasing number of RIP-relative load
instructions. As Figure 4.6b demonstrates, the number of executed pops increases at the same rate
as the counter for slow load effective address instructions, which are load pops with three sources.
This result confirms that the instruction is not only issued: its speculative execution does takes
place. I obtain similar results for other markers.

31

(a) MPX (b) Issued vs Executed

507 4 85
i]
g 02 72 -
-]
9 497 -
) 59 -
% 492 A
o
5 487 - 46

482 L T T T T T 33 L T T T T T

0 50 100 150 200 0 200 40 60 80
FNOPs injected number of issued "slow" lea operations

Figure 4.6: a) Speculative execution after an MPX bounds violation.

b) Performance counter numbers for an increasing number of speculatively executed relative load
instructions. The graph shows that the number of issued instructions corresponds to the number
of executed instructions, justifying the use of such instructions as markers.

4.3 Using SPECULATOR: Analyzing Attacks and Mitigations

I also use SPECULATOR to investigate new techniques to exploit speculative execution attacks.
On one hand, I can use SPECULATOR to perform measurements on snippet of code to verify their
behavior during speculation and verify that an attack might be feasible through those instructions
(An example is described in the Section 4.4).

On the other hand, some of the attacks require two threads interacting with each other through
a shared element such as the cache, the branch predictor or the RSB. For instance, during a Branch
Target Injection (BTI) generally there is an attacker thread that trains the branch predictor which
is shared between threads on the same physical core, and a victim thread that is condition by the
attacker’s training. I design SPECULATOR to support also an attack/victim scenario and used to
analyze RSB and BTI (Section 4.3.2).

Even though speculative execution markers cannot be used in a real world attack since they
require root access to the machine, they represent a valuable information source to verify the
feasibility of a technique in a controlled and noise-free environment. Once an attack is proven to
be working with speculative markers, it is easier to transition to methodology that do not require
root access but that tend to be more noisy like cache side channels.

4.3.1 SPLITSPECTRE

Here I try to mount a modified version of Spectre v1 I call SPLITSPECTRE. Conceptually, I want to
try to run a Spectre v1 attack with the attacker being able to provide the second of the two array
accesses required. The aim is to lower the requirements for the attack, as gadgets for Spectre v1
are difficult to find in real software. I provide a detailed description of this attack in the Section 4.4,

32

Figure 4.9.

I implement SPLITSPECTRE on SpiderMonkey 52.7.4, Firefox’s Javascript engine with standard
configuration parameters. Although I found a real-world gadget corresponding to this attack
easily (using string.charCodeAt), I were not able to make the exploit work. For a depiction of this
attack, I refer to the Section 4.4, Figure 4.10.

To better understand the issues leading to the failed exploitation, I extracted the corresponding
sequence of instructions from the trace of the attack and used them as a test inside SPECULATOR.
The result of the experiment show that the speculation window is too short to perform both
accesses. This fact is further confirmed when I run the attack using a shorter function that I
manually provide in the Javascript engine: in this case, the attack is successful.

I can draw two important conclusions from the outcome of this experiment. First of all,
SPECULATOR enables a systematic approach to the study of new attacks: i) formulate an hypothesis
on a possible speculative execution attack; ii) identify a target and collect execution traces;
iii) use the execution traces as part of a SPECULATOR snippet; iv) insert appropriate markers and
gather results; v) repeat on all the desired architectures. Secondly, although no exploitation of
SPLITSPECTRE is known, the attack is theoretically feasible and there may be either architectures
with a long enough speculation window to enable immediate exploitation on SpiderMonkey, or
other exploitable targets with shorter gadgets.

4.3.2 BTI

One interesting scenario, I investigated with SPECULATOR, is the feasibility of BTI poisoning
between co-located processes. I leverage the capability of SPECULATOR to run in attacker and
victim mode. I design the victim process to perform an indirect call to a certain location A. Also, at
a location B, I insert a marker instruction that is never executed by the victim process. I structure
the attacker process with an indirect call aligned with the call in the victim process.

I run the test with attacker and victim on two co-located threads. I start the attacker before
the victim to make sure that the indirect call in the attacker precede the one in the victim. Then,
I start the victim and I observe the counter of the speculative execution marker at B. When the
injection is successful, I observe the marker at B to be speculative executed by the victim. Our
success rate is up to 82% over a thousand runs on Skylake and Kaby Lake and up to 55% on Cofte
Lake and Broadwell. I report no success on AMD Ryzen.

4.3.3 Mitigations

Another interesting application of SPECULATOR is to test attack scenarios in the presence of
mitigations. For instance, using the BTI poisoning test describes in Section 4.3.2, I test the current
Spectre v2 mitigations available in the kernel. I focus on the following three: STIBP [20], IBRS [18]
and IBPB [19]. These countermeasures require either microcode updates, or kernel updates or
both. Our findings show that BTI between user space processes is mitigated only if STIBP is forced
on all the applications or enabled conditionally by the use of SECCOMP or prctl from within the
application.

It is worth noting that while these countermeasures are effective, the default settings in all the
machines I analysed do not enable them, and very few application uses SECCOMP, and none prctl,

33

to enable request STIBP protection leaving them vulnerable to such attacks. I leave the complete
analysis of the remaining security countermeasures implemented against SEAs to future work.

4.3.4 Out-of-order execution bandwidth

Speculative execution is no different in how it uses the resources available in both the front-
and the back-end of a CPU compared to regular execution. On Intel platforms, instructions that
have been fetched and decoded into pops by the front-end are entered in the reorder buffer of
the back-end. This buffer contains all pops that are currently “in flight”, which means they are
either ready for execution, are currently being executed, or have finished execution. The buffer’s
name derives from the fact that on modern CPUs pops are executed out-of-order. This means
they are dispatched to execution units based on their data flow dependencies, rather than the
control flow of the program. After being executed, they remain in the reorder buffer until they are
retired. Retirement of pops happens at an assembly-instruction granularity and in-order, honoring
the control flow of the program. When pops are retired, the outcome of their computation is
committed to the program’s state.

The size of the reorder buffer is a natural upper bound on the length of a sequence of instructions
that can be speculatively executed. That is, the reorder buffer would hold the branch instruction
that triggered speculative execution plus the instructions of the code path being speculatively
executed. The branch instruction is the first one that is retired in-order, potentially causing all
other pops in the buffer to be canceled in case of misprediction. If the branch instruction takes
time to retire, e.g., because it depends on a compare that requires a slow memory access, chances
are higher that the reorder buffer is filled with pops that are speculatively executed than for a
branch that retires quickly. If the reorder buffer is full, the whole CPU back-end stalls.

A large reorder buffer is beneficial for attacks that exploit speculative execution because it
lets a larger amount of instructions be speculatively executed, enhancing the capabilities of a
speculative execution attacker. While the size of the reorder buffer is typically a known attribute
of a CPU, I decided to empirically verify this number to show how precise measurements taken by
SPECULATOR are. In my experiment, I use the UOPS_EXECUTED.CORE counter (see Section 4.1.5).
Since the counter operates at the granularity of a core, I disable SMT to reduce the noise caused
by Hyperthreads that are scheduled on the same core. I also use the BR_MISP_RETIRED counter,
which counts the number of mispredicted, retired branch instructions.

When relying on the count of executed pops to measure the reorder buffer size, I need to
keep in mind that the pops actually need to execute before the branch that triggered speculative
execution is retired. This means I need instructions that execute quickly to achieve maximum
throughput. Since “regular” instructions would easily saturate the available execution ports and
units, I pick the NOP instruction. NOP is decoded into a single pop, which occupies a single slot in
the reorder buffer. It does not actually execute and thus neither requires an execution unit nor is it
captured by the counter that measures executed pops. I thus put an arbitrary regular instruction
as a marker at the end of the NOP-sled, increasing the latter in size for each test generated. When
running this test with SPECULATOR, I expect to measure a constant amount of pops executed up
to the point, where the NOP-sled takes up all slots in the reorder buffer and the terminating
instruction is no longer speculatively executed. Indeed, the results match my expectation: as can
be seen in Figure 4.7, the number of executed pops is constant up until 188 NOPs on Broadwell and
220 NOPs on Skylake. In addition to the NOPs I also need to account for the branch instruction,

34

taking up two slots in the reorder buffer as well as the marker instruction, taking up yet another
two entries. In total, this is in line with the specifications published by Intel, which state a reorder
buffer size of 192 entries for Broadwell and 224 entries for Skylake.

34 ~ X
- —— Skylake
9 331 Broadwell
X 32 A
3
o 31 N
=}
30 l T T T T T T T T T
0 30 60 90 120 150 188 220 240

number of NOPs

Figure 4.7: Reorder buffer size test results on Broadwell and Skylake. Since the marker instruction
is no longer executed for a sufficiently large number of NOPs, the number of executed pops drops
at the size of the reorder buffer.

Interestingly, the number of executed instructions differs for the architectures: it is 34 and 32
for Broadwell and 32 to 30 for Skylake, in spite of the code being exactly the same. Presumably,
this is caused by extended pop-fusion introduced as optimization on Skylake. Fused pops count as
a single pop.

AMD’s Zen platform has a construct similar to Intel’s reorder buffer: the retire queue. Every
pop that has entered the back-end and not been either retired or canceled takes a slot in this queue.
my Ryzen CPU does not feature a counter for executed pops, so I can only provide a measurement
based on my marker instruction in this case. The marker instruction, which takes up four pops in
this case, is executed up until 186 NOPs. This is in line with the size of the retire queue, which is
specified to have 192 entries (= 186 + 2 + 4). Interestingly, the speculation window seems to be
halved when I switch off SMT: I recognize execution of the marker instruction only up to 91 NOPs.

Empty RSB behavior in pre-Skylake CPUs

During my RSB test, I run the test on all the Intel machines I have available that are listed
in Table 4.1. Meanwhile the results related to the actual length of the RSB give us expected results,
I notice that the behavior of the CPU after the RSB is emptied is different for machine pre-Skylake.

As Figure 4.8 shows, the CPU (in this case a Broadwell CPU) is still able to hit the expected
return location around 25% of the time even though the RSB is actually empty. This behavior
differs with the one of newer machines like Kaby Lake presented in Figure 4.3. This indicates
that the re-design that happened in Skylake, and its optimizations, affected the second line of
prediction in case of very deep call stack like the one I purposefully tested.

4.4 SPLITSPECTRE

35

—— Failed load to store forward
Mispredicted Branches

marker hit
i
1

call stack depth

Figure 4.8: RSB test on Broadwell. As in the AMD case, Broadwell is able to predict the location of
my target even if the RSB is empty.

4.4.1 The SplitSpectre Gadget

In Spectre v1, the victim code that is executed speculatively (“gadget”) consists of three components:

i) a conditional branch on a variable, typically a length check, ii) a first array access that uses
the variable from the conditional branch as an offset, and iii) a second array access that uses the
result of the first array access as an offset.

If the conditional branch triggers speculative execution of the following array accesses (phase
© described in Section 2.2.3), the first array access may access an out-of-bounds memory region,
revealing the contents of this region through a side channel (phase @) by measuring the access
time to the second array after executing the gadget (phase @).

Although Spectre v1 is powerful and does not rely on SMT, it requires such a gadget to be
present in the victim’s attack surface. Google Project Zero writes in their original blog post on
Spectre v1 [4] that they could not identify such a vulnerable code pattern in the kernel, and instead
relied on eBPF to place one there themselves.

In this point lies the idea of my Spectre v1 variant, SPLITSPECTRE. As its name implies, it
splits the Spectre v1 gadget into two parts: one consisting of the conditional branch and the array
access (phase @), and the other one consisting of the second array access that constitutes the
sending part of the side channel (phase @). This has the advantage that the second part, phase @,
can now be placed into the attacker-controlled code. It is more likely that an attacker finds such
gadgets, thereby alleviating one of the main difficulties of performing a v1 attack. Furthermore,
the attacker can choose to employ amplification of a v1 attack by reading multiple indices of the
second array to deal with imprecise time sources.

Figure 4.9 compares the regular Spectre vl with my split version. As shown in the figure,
the speculation window needs to be sufficiently large such that it still covers the second part.
I define the speculation window (short for speculative execution window) as the time interval
between the event that triggers speculative execution, e.g., a branch condition, and the point in
time when it is resolved and the speculatively executed instructions are either retired or rolled
back. The speculation window is measured in cycles and determines how many instructions of a
given sequence are speculatively executed. The number of instructions of a given sequence that

36

| Attacker | | Victim |

|

I

train branch predictor :
flush cache |
|

|

|

1

S \ —

| victim(1)

’ >

: [(if (1 < sizeof(arrayl)
speculation ! j = arrayl[i]
window : v = array2[j]

¢ -——-———————————— 4

1

for (i in sizeof(array2))
time(array2, i)

(a) Regular Spectre v1. The gadget requires two dependent array accesses in the victim’s attack surface.

| Attacker | | Victim |

train branch predictor

flush cache
| victim(1i)
| >
| —)
| if (i < sizeof(arrayl)
speculation : L J = arr_!ayl[l]
window A i

v = array2[]j]
for (i in sizeof(array2))
time(array2, i)

|

I
(b) Split Spectre v1. The second, dependent array access from a regular v1 gadget moves to the attacker

code.

Figure 4.9: A comparison of regular Spectre v1 and SpLITSPECTRE. While SPLITSPECTRE only
requires a simple array access, the speculation window needs to be sufficiently large to contain
both the gadget and the second array access exercised by the attacker.

37

SpiderMonkey
N JIT compiled trace SplitSpectre
Javascript code > a = victim(i) Part 2
b = array[a] (attacker controlled)

i

native function

int victim(i) { SplitSpectre
if (i < array2.len) Part 1
return array2[i]; (runtime provided)
}
_ J

Figure 4.10: A conceptual view of a SPLITSPECTRE attack instance with JavaScript.

can be speculatively executed at a given time also depends on the CPU’s microarchitecture. For
example, some instructions are more “expensive” in the sense that they are split into a number of
pops, and thus take a long time to execute. Also, the combination of instructions in a sequence
affects how fast they execute: similar instructions might lead to congestion on the execution ports,
as they require similar execution units.

The speculation window caps the maximum number of instructions executed between the
two parts. Extending the length of the speculation window is an instrumental part in extending
the capabilities of a speculative execution attacker and the reach of a SPLITSPECTRE attack. In the
course of the dissertation, I show how I use SPECULATOR to evaluate SPLITSPECTRE and speculative
execution aspects relevant to its feasibility.

4.4.2 The Analysis

I mounted a SPLITSPECTRE attack in a real-world setting. I chose a browser-like setting, where
untrusted JavaScript is executed in a trusted runtime environment, establishing a privilege bound-
ary. Recall that a v1 gadget consists of a bounds check and two array accesses, the first one using
the provided index and the second one using the content of the first array at that position as
an index into the second array. In order to mount a regular Spectre v1 attack, I would require a
complete Spectre v1 gadget available in the JavaScript engine. The intuition behind SPLITSPECTRE
permits us to relax this requirement and only require the first half of a V1 gadget, i.e., the bounds
check and the first array access. The second half of this gadget is provided by attacker-controlled
JavaScript code (Figure 4.10). The attack can only work if speculative execution spans across the
privilege boundary from the bounds check in the runtime environment to the second array access
in the attacker-controlled, unprivileged code.

I implemented SPLITSPECTRE on SpiderMonkey 52.7.4 — Firefox’s JavaScript engine. I use the
standard configuration parameters and conducted experiments on my Haswell, Coffee Lake, and
Ryzen CPUs.

I start my experiments by introducing a built-in native JavaScript accessor function to Spi-
derMonkey’s source code that returns the content of a pre-allocated array at a given index. This

38

1241 Coffee Lake

114 - Successful attack
104 -
94 -
84 -
74
64 -
54 -
44 A
34 -

uops executed

T T T T

0 7 14 21 28 35 42 49 56 63 70 77 84
Instructions

Figure 4.11: An examination of the SPLITSPECTRE execution trace between the length check of
string.charCodeAt_impl() and the second array access using SPECULATOR. The graph shows my
results of the test on a Coffee Lake machine. It shows that, on average, I are not reaching the second
array access in speculative execution. The small spikes in the graph are caused by mispredicted
branches in the trace itself, which lead to nested speculative execution of fast-executing code
paths.

function is the first part of the speculative execution gadget that needs to be part of the victim’s
attack surface. To simplify the code, I explicitly flush the bounds of the array. my attacker code is
an adapted regular V1 PoC code for JavaScript JIT engines, with just the first array access replaced
by the call to the victim function. The time measurement is done using the SharedArrayBuffer
technique, which reads the content of such a buffer while it is being incremented in the background
by a web worker that is running in parallel.

The attack is successful. That is, on my Coffee Lake platform, I leak a string of ten characters
with a success rate of over 86.2%, and I leak the full string with a success rate of 46% (i.e.,
see Table 4.4). Investigating the distance between the two parts of the speculation gadget, I
measure the distance after 50 training runs of the JavaScript code that causes Spidermonkey’s
tracing JIT to compile an optimized Ion]JIT trace implementing the JavaScript code in assembly.
The distance between the bounds check and the second array access is 43 instructions, which is
small enough for the attack to produce reliable results.

I proceed with my experiments by replacing my native built-in function with code already
present in the SpiderMonkey source. my scan for a suitable gadget reveals the built-in string.charCodeAt()
function, which returns the character code of a string at a given index and is implemented in
native code. Internally, string.charCodeAt() calls string.charCodeAt_impl(), which includes the
bounds check and actual access. Unfortunately, the speculation window is not large enough for

39

Haswell Coffee Lake

Runs 100 100
Only highest scoring char 76.6% 76.8%
1st and 2nd highest scoring char 80.7% 86.2%
Full string leaked 10% 46%

Table 4.4: Success rates for the SPLITSPECTRE attack on JavaScript. I perform 100 runs, each run
trying to leak a string of 10 consecutive characters. I provide numbers on both the highest and
the second highest scoring characters.

the attack to work with string.charCodeAt(): After 50 training runs, the distance between the
compare in string. charCodeAt_impl() and the dereference of the second array in the JIT trace is
90 instructions. An examination of the extracted execution trace with SPECULATOR shows that
the number of speculatively executed pops is, on average, slightly lower than necessary for a
successful attack (Figure 4.11). This means that in this scenario, the crucial load instruction is not
always reached during speculative execution.

I also examine the execution trace on an AMD Ryzen CPU using a marker instruction, since
the Zen performance counters do not feature a generic counter for executed instructions. I observe
the marker instruction being executed for the full length of the trace. However, even here, the
granularity of the time measurement is too coarse-grained to permit a successful read of the cache
side channel. Amplifying the attack by adding multiple dependent array accesses would extend
the trace so that it no longer fits into the speculation window.

I further optimize the attack by reducing the amount of code that is executed between the
bounds check and the second access. This is achieved by implementing the second access and the
call to the victim function in web assembly, which allows even more attacker control over the
compiled JIT trace. However, using WebAssembly actually increases the number of instructions
between the compare and the second access to 107. This is because the native call is not made
directly from within the WebAssembly. Rather, additional JavaScript glue code is invoked.

JIT engine authors have already reacted with countermeasures [43, 42] in order to mitigate
Spectre v1 in the context of browsers. These countermeasures mostly address sources for high-
precision timers. Diluting the timing and disabling homebrew sources such as SharedArrayBuffers
mitigate this version of JavaScript SPLITSPECTRE. However, it remains to be seen if amplification
of the attack’s timing properties make it feasible if only coarse-grained time sources are available.

On top of timing-related countermeasures, the V8 engine also masks addresses and array
indices in JITted code before dereferences. While this mitigates a standard Spectre v1 attack, it
does not help with SPLITSPECTRE, where the bounds check is actually not exercised in JITted code,
but the engine code itself.

my analysis lead us to conclude that the attack is viable, and that the ability to trigger it in
practice depends on the identified microarchitectural properties of individual CPU families. I leave
a comprehensive analysis of these properties for the various CPU architectures/models as an item
of future work, which can be aided by SPEcCULATOR.

40

Attacker Victim

Y

0x400800 mov rdx, 0x403000
Ox400820 call *rdx

Ox400830 loop 0x400800

J 0x400820 call *rdx

BTI Training

Ox400830

BTI Gadget Hijack

I’ A Y
iDATA CACHE GADGET @ 0x403000)
7’

~

Side Channel Send
(Attacker Provided)

(: TIMING CACHE ACCESS :)

Side Channel Receive

Y
Time

Figure 4.12: Overview of Spectre v2, a SpCFH attack: the attacker performs BTI at first; the victim
speculatively executes the injected gadget whose cache side effects are later measured by the
attacker.

4.5 New microarchitectural side-channels

Since the discovery of Spectre in 2018, a large number of SEAs have been presented. Most of
these attacks rely on the Spectre V1 side-channel-send gadget (or spadget) presented in the original
attack [5] which enables the information leak through a microarchitectual side channel. However,
all the PoCs known to date require the ability to inject code or return into attacker-provided code
(as in the Google Project Zero eBPF-based Spectre v2 exploit), showing that suitable spadgets have
been hard to find. This motivates the research for new classes of spadgets.

In this dissertation, using the SPECULATOR and the technique described in Section 4.1, I inves-
tigated two new classes of spadgets. The first uses the instruction cache as a send and receive
channel to leak a bit, dependent on a forced control flow in a spadget. The second uses BTI itself
as a send and receive channel.

41

4.5.1 Icache Attack

The first contribution of this dissertation in discovering new side channel gadgets is the icache
attack. Informally, this attack is based on the following observation: while the CPU strives to
undo the effects of speculatively executed but not retired instructions, it does not hide effects on
the instruction cache. As such, the instruction cache may be used to build a side channel between
a gadget speculatively executed by a victim process and a gadget executed by an attacker process.

This attack makes use of speculative control flow hijack in order to redirect the victim to a
gadget, henceforth referred to as the icache gadget. The icache gadget has the following charac-
teristics: i) a compare-like instruction followed by a conditional jump; ii) target and fallthrough
block of the jump leaving measurable and distinct side effects in the instruction cache; iii) the
gadget is mapped by both the victim and the attacker. By measurable I mean that another process
should be able to observe changes to the instruction cache left by the speculative execution of the
gadget, for instance by attempting to execute either block (target or fallthrough) and measuring
the speedup (or lack thereof) induced by the fact that the instructions of the block are present
in the instruction cache. By distinct I mean that the effect left by speculative execution of one
block should be different from those left by the other block. These two conditions constitute a
side-channel-send operation over the information constituted by the condition of the jump. Clearly
this information must be valuable from a security perspective: the condition may for instance
depend on a compare instruction where the content of the register argument contains a secret for
the victim. The last condition is required for the side-channel-receive operation, since cache line
tagging in the instruction cache will not produce cache hits unless the cache lines have identical
(physical) tags. Virtual indexing and ASLR also plays a role which will be discussed later in the
section.

Figure 4.13 describes the attack. Attacker and victim are two co-located processes (either
interleaved on the same hardware thread or running on different hardware threads in the same
core). At first the attacker performs standard branch target injection by training an indirect jump
to redirect the control flow to a specific address. The attacker chooses this address as that of
the icache gadget. Whenever the attacker is successful, the control flow of the victim will be
(speculatively) redirected to the icache gadget. In the figure, the gadget compares the content
of rax to an immediate, and based on the result jumps to a block that performs a direct call -
either to funl or fun2. I assume that rax contains a secret, loaded before the indirect jump of the
victim is executed. If BTI was successful, the attacker may later time the execution of either of
the two functions to receive the leaked bit through the side channel. Note that the schedule of
attacker and victim only needs to be loosely synchronised: the attacker’s BTI training needs to be
scheduled before the victim’s targeted jump, and the attacker’s icache timing must be scheduled
after the speculative control flow hijack takes place. The attacker is thus able to leak one bit for
each successful round. By varying the icache gadget to point to gadgets that leak different bits of
the secret, the attacker may be able to partially or entirely reconstruct the secret.

4.5.2 Icache Discussion
Anatomy of an icache gadget

As discussed, the icache gadget presents relatively few restrictions and it is thus expected to be
widely available to an attacker. In particular, the requirement of a shared memory mapping is

42

Attacker Victim

Y

0x400800 mov rdx, 0x403000

Ox400820 call *rdx

0Ox400830 loop 0x400800

] Ox400800 mov rax, secret

BTI Training |

0x400820 call xrdx

\ 0x400830

. BTI Gadget Hijack

1 ¥
Ox403000 cmp rax, 0

Ox403010 je 0x403040
! Ox403020 call funl

1 Ox403030 jmp 0x403050
Ox403040 call fun2

0x404810 rdtsc
0x404820 call funl
Ox404830 rdtsc

Side Channel Send
(icache Gadget)

Side Channel Receive
(icache Timing) y

Time

Figure 4.13: Description of the icache attack: the attacker performs BTI at first; the victim
speculatively executes one of two functions depending on the content of a register; the attacker
later times the execution of either function to learn one bit of the condition register.

43

satisfied in the (common) case of two processes (attacker and victim) using a common shared
library, or the attacker mapping the executable of the victim. This ensures that instruction cache
lines will have identical (physical) tags. Restrictions on virtual addressing will be discussed later
in the section. The gadget shown in Figure 4.13 requires target and fallthrough of the conditional
jump to contain a call to different functions. However, at its core, the gadget only requires that
the icache-observable side effect be different depending on the outcome of the conditional jump.
With this criterion I may eliminate gadgets whose size is a single cache line, or gadgets that will
be prefetched in their entirety irrespective of the actual (speculated) control flow. No further
restriction is imposed on the gadget. Finally, I stress that the icache gadget does not require the
presence of the secret-dependent control flow antipattern in the victim code, e.g., as in previous
icache-based attacks [71, 72]. While the icache gadget indeed performs a conditional jump based
on the value of a secret, the secret is set by the victim in the completely unrelated BTI gadget.

ASLR

The presence of ASLR on most modern systems introduces an obstacle for the attacker; indeed,
while the requirement on a shared mapping of the icache gadget ensures that cache lines will have
identical (physical) tags, they must also have identical (virtual) indices. The attacker may either
target a shared icache gadget that is not built as position-independent code (e.g., (rare) a shared
library built without the fPIC or equivalent compiler option; or (more common) an executable
built without the fPIE or equivalent compiler option), or utilise well-known means of discovering
the ASLR offset [73, 74].

Alternative side-channel-receive

In the icache attack, the side channel is read by timing the execution of either the target or the
fallthrough block of the jump in the icache gadget. An alternative to this approach is to perform
a standard cache timing attack, by simply reading the code to probe it, instead of executing.
Given that in my target platforms L1 data and instruction caches are separate, I did not try this
experiment because the side channel would be noisier due to the smaller time difference between
L2 cache and main memory.

4.5.3 Double BTI Attack

In this section I describe the second attack, called Double BTI attack. The Double BTI attack also
exploits speculative control flow hijack, as first shown by the Spectre v2 PoC. The original Spectre
v2 POC, depicted in Figure 4.12, requires the ability of the attacker to inject a gadget into the victim
address space, namely, the data cache gadget used to perform the side-channel-send operation.

44

Attacker Victim

Y

4)

Ox400800 mov rdx, 0x403000

Ox400820 call *xrdx

0x400830 loop Ox400800

- J

J

/6?403600 ret ‘\

Ox403010 call *rax

\88463620 ret 4/

BTI Training

0x400800 mov rax, verify
0x400810 mov rdx, correct

Ox400820 call *rqx

\

1
1
I
I ...
Phase 1 ' Ox400830 |
! i
______ - ! BTI Gadget Hijack
= =~ 1 //
~ 7
~ . p
N | 0x403000 nop"
N\ 0x403010 call *rax
ce .
Ox404000 mov[Ox403000],0x90 \
T D Side Channel Send
BTI Gadget Patch \ \ N (Reverse BTI Gadget)
! ~
1 =~
/E;4®®7f® mov rax, correct‘\\ 1 -
Ox400800 mov rdx, 0x403000 1
. . Phase 2
\fj40®82® call *rdx ‘4// |
-] |
Ox403000 nop .
0x403010 call *rax
0x403020 ret :
d 1
verify: -~ 1
0x404810 marker 1
0x404820 ret |
correct: !
0x407840 ret Y

Side Channel Receive Time

Figure 4.14: Description of the Double BTI attack: the attacker performs BTT at first; the victim
speculatively executes the “reverse” BTI Gadget that further trains the branch predictor with the
value of a register or a memory location; the attacker later execute the same “reverse” BTI Gadget
and based on the side effects of wrong prediction (e.g., executing an instruction marker to a given
location) can guess the value of the register or memory location

45

With the Double BTT attack I are able to lift this restriction, making speculative control flow
hijack attacks far more pernicious. The intuition behind the attack is that the gadget implementing
the side-channel-send operation may be instantiated as simply as by a second indirect call. Crucially,
this indirect call will cause a second, “reverse” BT, where this time the attacker is subjected to
branch target injection. If the attacker is able to measure the effects of this second BTI and learn
one or more bits of information about the injected target, the side channel is successfully read.

At a high level, the attack has 2 main phases: in the first phase, the attacker performs standard
BTI and, whenever successful, causes the victim’s control flow to be (speculatively) hijacked to
execute the reverse BTI gadget. This represents the side-channel-send operation. In the second
phase, the attacker attempts to perform the side-channel-receive operation by observing the effects
of the victim’s speculative execution. I can see the two phases in detail in Figure 4.14.

Phase 1

Phase 1 starts with the attacker training the BTB by repeatedly executing an indirect call whose
target address is identical to the one of the reverse BTI gadget in the victim. The attacker can
execute this either on the same thread or on a twin thread on the same physical core of the victim
process. The gadget (identified in the figure as the BTI training gadget) the attacker calls into
initially consists of a return instruction followed by a register-indirect call instruction that is never
executed in this phase.

When the training is over and BTI is successful, I assume that the victim speculatively executes
the reverse BTI gadget. The reverse BTI gadget is identical to the BTI training gadget in the
attacker, save for the fact that it starts with a nop. The nop may be replaced in practice with any
instruction that doesn’t disrupt the control flow and whose size still ensures that the indirect call
in the victim’s reverse BTI gadget has the same address as the (so-far unexecuted) indirect call in
the attacker’s BTI training gadget.

The reverse BTI gadget contains an indirect call which is speculatively executed. Crucially,
my findings prove that the side effects caused on the BTB by its execution are not rolled back by
the CPU. Further, I show that a single execution of the victim is sufficient to make this side effect
persistent and observable. For these reasons, I can see the reverse BTI gadget as an implementation
of the side-channel-send operation: if the information being sent depends on a secret of the victim,
the attacker is later able to read it with a suitable side-channel-receive gadget in the next phase.

Phase 2

At this point phase 2 begins. In phase 2 the attacker “patches” its BTI training gadget by replacing
the leading ret with a nop. This enables the attacker to perform the second indirect call without
losing alignment with the victim and without requiring more complex gadgets to distinguish
between training and measurement mode.

Subsequently, the attacker calls into the (now patched) BTI training gadget once more, finally
executing the register-indirect call whose target was trained by the victim. If the victim’s training
was successful, the attacker will not execute the code at the correct label but rather at the victim-
trained verify label. This is because the CPU tries to predict the target of the call, and uses the
history left from the victim execution. The attacker structures its address space to contain suitable
speculative execution markers. Observing the side effects left by the marker corresponds to the

46

side-channel-receive operation.

4.5.4 Practical considerations

In my first proof-of-concept implementation, I instantiate the marker with a set of instructions
that is measured by a specific Intel Performance Monitor Counter (PMC). The chosen event must
be one that is triggered even if the responsible instructions do not retire. In practice I have chosen
the failed store-to-load forward counter, which requires a sequence of 3 mov instructions. The
performance counter related to the marker is incremented whenever the attack succeeds and the
indirect call in phase 2 is speculatively redirected to the location trained by the victim. Clearly
this technique is not applicable to a real-world setting since programming PMC counters requires
root privileges.

I identify 2 realistic marker instances that implement a side-channel-receive operation. The first
candidate uses instruction cache side effects. Assuming that the attacker knows the first 6 most
significant bytes of rax and wants to discover the 7™, it would layout its address space by placing
at each of the 256 possible addressed an icache-differentiable gadget. This gadget would in practice
contain a suitable amount of nop padding to account for the content of the least significant byte
and a call instruction to one of 256 different functions, followed by an Ifence instruction to stop
speculative execution. The attacker would speculatively execute one such gadget as the first part
of the side-channel-receive operation, and then time the execution of all functions as second part
of the side-channel-receive operation. If only one of the functions executes in less time than a
pre-computed threshold, its ordinal number corresponds to the leaked byte. This approach suffers
from a rapidly deteriorating signal quality, due to the noise induced in the instruction cache by
the measuring process.

//;alueO: 4‘\

mov rax, QWORD[array + 0 * 1024]
ret

valuel:
mov rax, QWORD[array + 1 * 1024]
ret

value255:
mov rax, QWORD[array + 255 x 1024]

\\» ret AJ/

Figure 4.15: side-channel-receive approach using data cache access pattern

The second candidate uses data cache access as a measurable side effect. The setup is identical
to the previous approach save for the fact that the 256 target functions each contain a different
memory access (load operations on an array). When speculatively executed, this induces an effect
in on the data cache, which can then be measured. This approach is described in Figure 4.15. With

47

this approach, the side channel signal maintains its quality throughout the measuring process and
allows the attacker to extract a full byte from the side-channel-receive operation.

4.6 Gadgets analysis

4.6.1 Icache Attack

Experimental setup

I test the icache attack on an Intel Core 17-6700K CPU running Ubuntu 16.04.6 LTS, kernel version
4.15.0. The attacker and victim processes are co-located. The following system setup is in place:
ASIR is off to ensure consistent virtual addresses for BTI training, scaling governor is set to
performance for constant clock frequency. Clock frequency is set below turbo. On the speculative
execution mitigation side, the default setup is in place — spectre_v2 set to auto and spectre_v2_user
set to auto.

The attacker process is timing the execution of target code that is shared between victim and
attacker. The same icache (physical) tags allow the attacker to determine the exact path taken
in the victim icache gadget. To enforce this behaviour, I test my attack on two different setups:
in the first, the shared code resides in a POSIX shared memory region; in the second, the shared
code is part of a shared library. For this second part, I test with both libhttp-parser, part of nodejs
and libcrypto, part of OpenSSL.

Attacker and victim use lightweight synchronisation for higher BTT success rate. In practice,
this synchronisation is not required as long as I can assume that the attacker is able to trigger
the victim and can thus time its execution accordingly. To maximise the signal of the icache side
channel I flush the cache lines that correspond to the target code area before each loop. Given
that the shared gadget is dynamically mapped, the icache timing gadget in the attacker does not
time a direct call but a register-indirect one.

Results and Discussion

The overall success rate of the experiment shown in Table 4.5 is above 80% for guessing either
of the two secret bit values, which is well above the 50% random guess threshold. Therefore,
the attack is successful. I compute the success rate per 100 runs to be the number of times the
attacker correctly guesses the secret bit. I then compute average and 95%-confidence interval for
the success rate by repeating this experiment 1000 times, and therefore collect a total number of
100k samples.

Table 4.5 shows results with a gadget chosen from libhttp-parser.so: in particular the chosen
functions for funl and fun2 are 7 pages apart and are 29 and 870 bytes each. I obtain similar
results for the other combinations (POSIX shared memory or different shared objects). The overall
success rate is mostly dependent on how successful BTI is, with the BTI success rate itself varying
from 70% to 90% over all my experiments. Each run collects one timing of the execution of the
function funi (with reference to Figure 4.13) corresponding to the function that the victim should
speculatively execute in case of successful BTI and when the (secret) value of the condition register
is 0. If the timing is below some threshold, the attacker guesses that the value of the secret is 0,
and 1 otherwise. I determine the value of the threshold by timing the execution of fun1 during a

48

Secret Success Rate

+

0 80.84% + 1.37

1 97.29% + 0.11

+

Table 4.5: icache attack experiment with a gadget from libhttp-parser.so: each row displays the
success rate in guessing the value of the victim’s secret. The success rate is computed as the
rate between samples displaying an icache hit (resp. miss) when the value of the victim’s secret
is 0 (resp. 1). An icache hit is defined as an execution of the icache gadget timed below a pre-
determined threshold.

learning phase, building a distribution of timing samples for icache hits and setting a hit threshold
as ht = avg + 3 = 0, where avg and ¢ are average and standard deviation of the distribution.

4.6.2 Double BTI Attack

Experimental setup

I tested my Double BTI attack on multiple Intel CPUs. On each machine, the attacker and the
victim are co-located. In the PoC, the register (rax) that is the target of the indirect jump in the
reverse BTI gadget is set as follows: the 3rd least significant byte is a secret value that the attacker
wants to discover, prefixed by a (known) offset and suffixed by all zeroes. The prefix just ensures
that the attacker can map its set of 256 markers at a non otherwise mapped location. In the PoC,
the attacker uses Double BTI attack to learn the value of the secret byte. I use data cache timing
markers as discussed in Section 4.5.4. During this experiment, the mitigations enabled against BTI
are the default ones (see Section 4.7) enabled on a stock Ubuntu. In this attack, I do not employ any
specific synchronisation between victim and attacker: the correct sequencing of the two processes
is achieved simply by delaying the start of the victim by a suitable amount of time. I clflush the
memory locations containing the indirect call targets to maximize the speculation window. With
this setup, I measure the attack success rate over 1000 attempts to leak the unknown byte of rax
by timing accesses to each of the 256 locations in the array that is filled by the corresponding
markers (as described in Figure 4.15). I repeat this procedure 1000 for each 1000 attempts to create
a statical distribution of the attack for each machine. The timing of the array is performed in
non-linear order to avoid prefetching effects. The timing always reveals two different cases: either
exactly one array location is below a pre-defined threshold (fixed at 80 clock cycles) or none is.
The first case corresponds to a successful side-channel-receive operation.

Figure 4.16 shows the results of my experiments on different platforms. I can see that I have
non-negligible successes on all platforms, with success rates peaking above 90% and, in average,
never below 15%. Meanwhile, random guessing in this settings would result in a 1/256 probability
of success. The quality of the side channel signal is excellent owing to the fact that the attacker
performs both the initial (speculative) access followed in close succession by the timing of the
array location accesses, yielding an extremely clean measurement environment.

49

90% -

80% -

70% -

60% -

Y

50% -

40% -

Attack Success Rate

30% -
20% -
10% -

0% -

Broadwell Skylake Coffee.Lake Kaby.Lake.8650 Kaby.Lake.8550
Family Name

Figure 4.16: Double BTI attack success rate on leaking a one byte of secret

50

Distribution Kernel Generation Date STIBP Vulnerable?

Ubuntu 18.04.2 LTS 4.15.0-50-generic May 6 18:46:08 UTC 2019 conditional Yes
Ubuntu 18.04.2 LTS 4.18.0-18-generic Apr 5 10:22:13 UTC 2019 conditional Yes
Ubuntu 16.04.6 LTS 4.15.0-50-generic May 8 15:55:19 UTC 2019 conditional Yes
Ubuntu 18.04.2 LTS 4.19.0-041900-generic ~ Oct 22 22:11:45 UTC 2018 unsupported Yes
Ubuntu 18.04.1 LTS 4.15.0-29-generic Jul 17 15:39:52 UTC 2018 unsupported Yes

Table 4.6: Default STIBP settings in the kernel used by the distributions tested in my evaluation

4.7 Mitigations

Both the icache and double BTI method presented here use BTI for speculative control flow
hijacking. Therefore, BTI mitigations from Spectre v2 are applicable.

Mitigations are available at the hardware and software level to prevent BTT attacks. At the
software level, compiling with retpoline [17] mitigates BTI by rewriting all indirect calls to avoid
CPU prediction, through the use of a carefully crafted return sequence. At the hardware-level,
Intel added Indirect Branch Restricted Speculation (IBRS), Indirect Branch Predictor Barrier (IBPB)
and Single Thread Indirect Branch Predictors (STIBP). IBRS essentially flushes all branch predictor
state when switching between user and kernel mode. IBPB essentially flushes all branch predictor
state upon execution, even within a process. Finally, STIBP stops sibling SMT threads branch
predictor from influencing the branch predictor decisions on other siblings threads on the same
core.

I tested my attacks against the current implementation of BTI mitigations on the stock kernel
4.15.0 of my Coffee Lake machine. The kernel offers two switches to enable Spectre v2 protections.
The first, spectre_v2, controls mitigations for protecting the kernel from userspace attacks, as
well as functions as a master switch for enabling userspace protections. It can be set to on, off or
auto. The option on and off forces respectively all the protection to be enabled or disabled. In my
experiment, I left spectre_v2 to auto, the default setting in recent Ubuntu distributions, to be able
to enforce a finer grain control over the BTI mitigations and test functionality.

The second spectre_v2_user controls mitigations for userspace programs, and is gated by the
previous setting. It can be set to on, off, auto, prctl/ibpb and seccomp/ibpb. As for the previous
switch, on and off enable and disable all the protections. Meanwhile, auto defers the decision to
enable or disable each protection and their mode based on additional configuration. Instead, both
pretl/ibpb and seccomp/ibpb set IBPB always-on but leave conditional STIBP that has to be enabled
on request by the process. For seccomp processes the restriction is enabled automatically.

Among those settings, my attacks are prevented if and only if STIBP is enabled (forced globally
or the victim thread enables STIBP using prctl). Both attacks can also be prevented in software if
the victim is compiled using retpoline. While non-SMT based BTI attacks can be mounted (i.e,
attacker thread runs before and after victim threads, with two context switches), because of the
enabled kernel mitigations flushing branch predictor state, these attacks do not apply.

Given the current performance penalties of enabling STIBP, this protection is set conditional by
default or unsupported (as shown in Table 4.6) and therefore unless requested by the application,
my attack is not mitigated. Furthermore, I verified that sensitive programs such as passwd, sudo

51

and nginx do not make use of the prctl interface to enable currently such protection. Given these
default settings and the risks posed by BTI-related attacks, and in particular those presented in this
dissertation, I recommend sensitive applications to enable STIBP through prctl when assuming
local attackers.

Finally, other types of speculative control flow hijacks, i.e., return prediction based [32, 35]
remain unaffected by these mitigations, and the two methods presented in this dissertation could
be applied for those attacks as well.

52

Chapter 5

Impact of Spectre

Memory corruption vulnerabilities have plagued the computer security field for more than 30
years. Multiple ways of exploiting memory bugs have surfaced, requiring controls to be placed at
different levels in the software stack: mechanisms such as stack canaries and control flow integrity
have been designed and deployed as a mitigation in existing software, while new languages were
designed with memory safety to close this class of bugs in new programs [75, 76].

Recently, the new transient execution attacks [77] class, and more specifically SEAs [10, 35,
31, 32, 36, 34, 33] have been the subject of intense scrutiny. The ensuing vulnerabilities appear
difficult to mitigate without considerable performance trade-offs, leading to the conclusion that
speculative execution attacks will remain a problem for the foreseeable future, and therefore a
possibly fruitful area of research [78].

A natural question to ask is whether the advent of transient execution attacks has changed
the security stance of modern computing systems against memory corruption attacks: does the
security of memory safety mechanisms, such as stack smashing protection (SSP), control flow
integrity (CFI), and those embedded in memory safe languages, hold in the post-Spectre threat
model?

In this dissertation, I show that multiple memory safety mechanisms that would otherwise
successfully prevent exploitation of vulnerabilities can be speculatively bypassed to perform
arbitrary memory reads. Because these attacks require a combination of techniques, I show
that they do not apply to all memory safety mechanisms and a careful, case-by-case analysis is
necessary.

At a high level, these attacks work by overwriting, either architecturally or speculatively, a
backwards or forward edge, followed by the use of speculative code reuse attacks to leak data.
In all cases, this overwrite achieves a speculative control flow hijack, i.e., a redirection of the
speculative control flow to an attacker-chosen arbitrary address. One case of such an attack is the
speculative buffer overflow discovered by Kiriansky and Waldspurger [35], where a return address
is speculatively overwritten.

I demonstrate that SSP, GCC’s vtable verification (VTV), and Go’s runtime memory safety
checks are all vulnerable. In particular, I develop a practical attack against SSP, where the
mitigations against a stack-based buffer overflow in libpng can be speculatively bypassed to read
arbitrary bytes from the victim program. This attack additionally leverages a last level cache (LLC)
eviction attack to extend the speculative execution window, and a speculative return-oriented
programming (ROP) attack to achieve a Flush+Reload side channel by reusing 5 gadgets from the

53

victim program. Both components of the attack are not specific to SSP and generalize beyond my
selected use case. My results demonstrate that, although such end-to-end attacks are not trivial to
mount, they are realistic. For this reason, I evaluate countermeasures for each attack scenario,
showing that mitigations are both effective and viable from a performance standpoint.

Other natural questions that arise while trying to understand the impact of these new attack
is: how is it possible to verify if a system is vulnerable and understand which mitigations should
be enabled given a threat model? Multiple community-developed tools are available to guide
system administrators in the evaluation of their systems. I identified two main category of tools,
the empirical and the information gathering. The empirical tools run PoC of the attacks on the
machine under analysis and report if the attack has succeeded. The information gathering tools
instead, collect information through the system (e.g., from the /proc interface) about the available
mitigations and software versions (e.g., microcode version). However, it is unclear to what extent
can existing tools tell a system administrator whether a system is vulnerable to transient execution
attacks. I provide the first analysis of such tools and shed light on their capabilities and limitations.
Based on the experience gained, I proposed a hybrid tool, GHOSTBUSTER, that is meant to solve
the pitfalls of the existing methodologies.

In this area, I make the following contributions:

« Demonstration of a practical attack against SSP-based buffer overflow mitigations, together
with proof-of-concept attacks against GCC VTable Verification (VTV) and against Go’s
array bounds checks.

« Demonstration of speculation window lengthening leveraging LLC eviction of victim data.
« Practical speculative code reuse attack (ROP) to achieve side-channel send.

« Custom mitigations derived from Ifence-based and masking-based approaches, withstand-
ing the class of speculative architectural control flow hijacking attacks, together with a
performance evaluation.

« T analyze transient execution vulnerability checkers, and report on identified shortcomings
and pitfalls of these tools.

« I provide the first large-scale analysis for transient execution vulnerabilities on commercial
cloud providers.

« I provide recommendations based on 6 different use cases to correctly test for transient
execution vulnerabilities. As a result of my work, I provide a meta-tool, GHOSTBUSTER, that
combines and enhances existing tools to avoid the pitfalls observed in the state-of-the-art.

5.1 Speculative execution attacks on memory safety mecha-
nisms

In this part of my dissertation, I describe end-to-end speculative execution attacks on abstracted
memory safety mechanisms. I begin with a high-level overview of the various components
necessary to perform such an end-to-end attack. I then proceed to analyze the class of speculative

54

control flow hijacks which is at the heart of the attack; I refer to this general category of attacks
as SPEculative ARchitectural control flow hijacks, or SPEAR, and detail them in Section 5.1.1.
Furthermore, I analyze the eviction mechanism in Section 5.1.2, and the speculative ROP in
Section 5.1.3.

(10\ Find Eviction SetJ [“CD Eviction Loop}
[2& Init SC+ROP} [3% Send InputJ [7 SC Rece‘ive]

ATTACKER ' A Time)

VICTIM Y SC:SEND

[SPEAR -)[ROP]
S 6

Figure 5.1: Overview of speculative attack against memory safety mechanisms.

Figure 5.1 shows an overview of the steps required to perform an end-to-end attack. The
attack has a preparation phase (Steps 1 and 2), where eviction sets (to ensure the existence of a
suitably long speculation window) are identified, memory used by the side channel is flushed
and ROP gadgets are primed in the instruction cache. The attacker then submits an input to
the victim in Step 3, crafted to trigger a violation of a memory safety property. I assume that
traditional exploitation of the violation is prevented by a suitable memory safety mechanism.
However, the attacker uses a speculative execution attack to bypass the mechanism by overwriting
(architecturally or speculatively) control-flow data, and obtaining a speculative control flow hijack
(Step 5). As a result, the victim is tricked into executing a side-channel send of attacker-chosen
memory in Step 6: this is achieved with the ROP component, which reuses code snippets from the
victim program, appropriately selected and primed in the initialization phase. The attacker can
then execute the corresponding side-channel receive in Step 7. The success rate of the attack is
increased by concurrently executing an eviction loop to lengthen the speculation window (Step 4)
using the eviction sets found in Step 1.

Threat model: The general threat model for all attacks in this dissertation is a local unprivi-
leged attacker, targeting a process holding a secret in memory. I do not assume that the attacker
is able to inject code in the victim program’s address space. I assume the attacker has knowledge
of the victim program code, as well as the virtual address of code at runtime as is the case for
Go, or that they can recover this information if randomized, possibly by using microarchitectural
side channels [79, 80, 73]. Finally, because I opt to use a speculative ROP payload, I assume a
hyperthread-colocated attacker, thereby sharing the instruction cache with the victim program,
which the attacker leverages during the ROP chain warm-up phase. The goal of the attacker
is, as in all transient execution attacks, to leak secrets from the target program. Attacks based
on the architectural overwrite of a backward or forward edge correspond to the case where an
attacker can provoke a memory safety violation whose traditional exploitation is prevented by
hardening mechanisms in place. This is demonstrated in the SSP and CFI use cases. In this case, I
assume that the victim program can either be executed multiple times by the attacker or that the
program automatically restarts, given that each attack run leaks a limited volume of information

55

and likely leads to abnormal program termination. This assumption remains realistic in practice
because modern Linux distributions with systemd automatically restart services after abnormal
termination.

Attacks based on the speculative overwrite of a forward edge correspond to a victim program
with a memory safety check that the attacker can exercise and speculatively bypass. This is
demonstrated in the Go use case. In this case, given that the overwrite of control flow data occurs
speculatively, the attack does not lead to program termination, and so the attack does not require
the ability to restart the victim.

5.1.1 SPEAR attacks

A SPEAR-vulnerable sequence is a code sequence that results in a speculative control flow hijack.
A speculative control flow hijack allows an attacker to gain control of the target program’s
speculatively-executed code. This is a powerful primitive: an attacker can follow such an attack
with a speculative ROP sequence to speculatively execute code gadgets that access a secret and
send it to the attacker via a side channel.

Architectural Backward Edge

Overwrite Forward Edge

Speculative :Z(Backward Edge
Overwrite (Forward Edge

RSB Injection >

BTB Injection)

Figure 5.2: Overview of various Speculative control flow hijacking attacks.

Architectural
(ISA related)

N

Gpeculat‘ive CFI-D

Micro-architectural

L L2

Figure 5.2 shows a breakdown of the various instances in the SPEAR attack class in the context
of different variants of speculative control flow hijacks. Classic speculative control flow hijacking
attacks can be performed through microarchitectural components such as the Branch Target
Buffer (BTB) and Return Stack Buffer (RSB) [10, 31, 32]. At the same time, the speculative control
flow can also be influenced by instruction sequences that only affect architectural components,
such as registers or memory: I refer to these as SPEAR attacks. For instance, executing the call
%rbx x86 instruction speculatively when the value of %rbx is available to the execution unit will
result in speculative execution continuing at the address in the %rbx register. Therefore, if the
%rbx register can be controlled by the attacker, a speculative control flow hijack can occur. This
control by the attacker can either be architectural or speculative, as I will see next.

Similarly, a push %rbx; ret instruction sequence with the register value available would also
simply continue execution at the provided address, with no need to predict where speculative
execution continues via the RSB. Hence, SPEAR-vulnerable code patterns can concern both forward

edges (jmp and call) and backward edges (ret).

56

mov rax, [rsp]
mov QWORD[stored_ret], rax

mov rax, QWORD[target]
mov [rsp], rax

clflush [stored_ret]
1fence

mov rax, [rsp]
cmp rax, QWORD[stored_ret]
jne my_exit

Listing 3: Architectural backward edge overwrite.

The SPEAR classification offers us a convenient way to reason on attacks triggered by control
flow data overwrite. SPEAR covers all attack scenarios studied in this dissertation, namely,
speculative bypass of memory safety mechanisms; in addition, it covers other known attacks, such
as the speculative overwrite of a backward edge [35], and the speculative bypass of manually-
inserted array bounds checks [81].

Architectural overwrite

The case where an attacker controls the control-flow-influencing register architecturally, i.e., via
the Instruction Set Architecture (ISA), is closely related to traditional memory corruption attacks.
These attacks can nowadays be mitigated by mechanisms such as stack smashing protection (SSP)
and, in general, CFI implementations that check the validity of control flow metadata before
control flow is transferred, thus detecting and preventing outcomes induced by attacker-controlled
overwrites. SPEAR architectural overwrite attacks focus on the opportunity that the attacker has
to speculatively bypass the checks introduced by these mitigations.

I provide in Listing 3 the snippet of code that illustrate the backward edge case for architectural
overwrites. A similar snippet for the forward edge case is reported in Listing 4. The structure of
both cases is similar: the original value of the edge (line 2) is preserved in a safe location, after
which, I assume that the architectural overwrite is performed (line 5) with an attacker-controlled
value (e.g., through a buffer overflow). Afterwards, the program executes an integrity check on
the forward or backward edge (line 12) before performing the control flow transfer (e.g., SSP or
CFI check). To increase the success rate of the attack, I try to maximize the speculation window
caused by the integrity check, for instance by evicting its reference value — in the snippet, this

57

mov rax, [orig_ target]
mov QWORD[stored_target], rax

mov rax, QWORD[hijacked_target]
Bl mov QWORD[target], rax

‘Bl c1flush [stored_target]
B lfence

Al mov rax, QWORD[target]
Pl cmp rax, QWORD[stored_target]

Al jne my_exit

i call QWORD[target]

Listing 4: Architectural forward edge overwrite.

mov rax, QWORD[hijacked_target]
mov QWORD[target], rax

call QWORD[target]

Listing 5: Speculative forward edge overwrite

58

step is captured by a clflush instruction (line 8). If the CPU mispredicts the outcome of the check,
it might execute either a ret (backward edge) or a call (forward edge) which transfers the control
towards the attacker-controlled value used in the architectural overwrite (line 16).

Speculative overwrite

Alternatively, the attacker may control the control-flow-influencing register speculatively. This
means that in a first phase, speculative execution is triggered (for example by a conditional branch).
In a second phase, the attacker speculatively influences the control flow edge, thus hijacking
speculative control flow. The control-flow-influencing value may be the result of a load from
an address that is generated during the speculative execution phase, or it may be loaded from a
location that is speculatively overwritten by a preceding store operation, resulting in speculative
store-to-load forwarding.

I provide in Listing 6 the snippet of code that illustrate the backward edge case for speculative
overwrites. A similar snippet for the forward edge case is reported in Listing 4. Both cases
share the same structure. First, speculative execution is triggered by a condition (line 1). Then,
the speculative overwrite is performed through some instruction within the speculated part of
the code. Here, the value used for the overwrite is under attacker control (line 4). Finally, the
overwritten value is used for control flow transfer allowing the attacker to hijack the speculative
control flow (line 7).

Architectural Speculative
Family Fwd Bwd Fwd Bwd
Intel Broadwell 99.5 94.9 99.5 98.7
Intel Skylake 97.6 98.3 98.2 92.1
Intel Coffee Lake 99.8 98.1 99.7 994
Intel Kabylake 99.5 95.9 100 99.5
AMD Ryzen 100 100 100 100

Table 5.1: Success rate (in percentage) computed over 1000 iterations for architectural or speculative
overwrites of backward and forward edges performed on various architectures families.

SPEAR experimental results

I follow the methodology of Mambretti et al. [82] and test all four snippets using the Speculator
tool [83], which aids the detection of speculative control flow transfers by using performance
monitor counters (PMC) and speculation markers.

The SPEAR experimental results are shown in Table 5.1. Each success rate is computed on 1000
iterations. In the architectural overwrites case, speculative control flow hijacks are observed at least
95% of the time for Listing 3 and 97% of the time for Listing 4 on all tested architectures. The results
prove that control flow is indeed speculatively transferred to the overwritten location, thereby
bypassing the checks during speculative execution. Therefore, I conclude that SPEAR attacks with
architectural overwrites can result in speculative control flow hijacks. In the speculative overwrites

59

R % T P R

mov rax, QWORD[target]
mov [rsp], rax

Listing 6: Speculative backward edge overwrite.

case, for the backward edge case the success rate is at least 92% while for the forward edge case it
is at least 98% . The experiment results demonstrate that speculative overwrites are feasible and
lead to speculative control flow hijacks provided a sufficiently large speculation window exists to
facilitate the edge overwrite followed by the dereference.

5.1.2 Speculation window and eviction

SPEAR attacks require the existence of a speculation window to permit the execution of the control
flow transfer and the side channel send operation, a common precondition for all speculative
execution attacks. This requires a speculative execution trigger, i.e., an instruction that causes a
wide-enough window of dependent instructions that are executed but not retired. This is usually
achieved when the process accesses uncached data: the speculation window then corresponds to
the time for the access to main memory to complete. In Listing 4 for example, this is achieved with
the clflush instruction. To show the necessity of a wide speculation window, I re-run the snippet
without clflush in the Speculator tool and verify that indeed the control flow hijack only takes
place in about one run out of 1000. When it does, the window is only a couple of instructions wide.
I therefore conclude that without eviction, or other similar approaches to lengthen the speculation
window, SPEAR attacks are unlikely to be practical.

In all snippets referenced by this section, the speculation window is artificially lengthened by
flushing one of the memory operands of the compare instruction. This may not be realistic, as it
imposes a strong requirement on the victim code to include a flush (or comparable) instruction.
Instead, because the last level cache (LLC) is shared and often inclusive, the same effect can be
accomplished more realistically by an external attacker thread computing an eviction set and
performing a small number of accesses to addresses in this set.

An LLC eviction set competes for the same LLC slice and cache set as the target address to
be evicted. Existing techniques for performing such attacks typically assume knowledge of the
targeted physical address, as the LLC is physically indexed. As a consequence of rowhammer
attacks, this is no longer realistic, as most OSes have removed access to physical mappings for
unprivileged users. In Linux, privileged-only /proc/PID/pagemap access [84] was introduced in
release 4.0.

I demonstrate here that such eviction attacks can still be performed without knowledge of
the physical address. To this end, I perform the eviction in two steps. The first step consists of
the identification of an eviction set for a cache line in a page under the attacker’s control, by
following the approach of Maurice et al. [85]. The second step consists in releasing this page to

60

the OS, and executing the victim process such that it reuses the previously-created page. This
permits the reuse of the eviction set constructed and verified to be working in the first step. To
increase the victim data eviction success rate, I follow the eviction set loading method proposed
by Liu et al. [86]. I show details of such a practical attack in Section 5.2.1 for SSP.

5.1.3 Speculative ROP

To perform a complete speculative execution attack, the speculative control flow hijack must
be followed by a side channel send gadget with a secret input. Unfortunately, Spectre v1-type
Flush+Reload side channel send gadgets are known to be difficult to find [10, 4]. As in classical
control flow hijacks [87], however, a speculative code reuse attack can be performed by chaining
the speculative execution of gadgets to construct a Flush+Reload side channel send sequence.

To chain the gadget sequences, I proceed in a similar way to traditional ROP attacks, with
sequences ending in ret instructions, yet with two additional requirements. These requirements
for performing speculative code reuse are the following: i) execution of all instructions in the
gadgets must fit into the speculation window; ii) all code pages in which the gadgets reside must
be present and mapped in the victim process.

The first requirement is a consequence of the behavior of speculative execution. In particular,
all return values used to chain gadgets need either to be in store buffers or in cache. Indeed,
whether the return addresses are speculatively or architecturally written to the stack, execution of
return instructions will make use of these addresses if they are available, with the CPU preferring
those values for steering front-end fetches over values provided by the RSB. If the return address
is not in cache (or in store buffers), loading the return address from memory will exceed the
speculation window in practice and only RSB-based branch prediction will be in use, which will
result in failure of the attack. A similar approach and analogy exists with forward edges for code
reuse. Using the Speculator tool, I obtain experimentally that the maximum number of empty
gadgets that fit in the largest speculation window is 20 on my Kaby Lake 17-8550 test platform.

The second requirement is needed to avoid page misses during gadgets execution. In the event
of a page miss, speculative execution might halt or nested speculation might be triggered. Despite
of the two strict requirements, I show in Section 5.2.1 that speculative ROP can be achieved for a
practical use case.

5.2 Case studies

In this section, I analyze different case studies where memory safety mechanisms can be bypassed
with SPEAR attacks. In particular, in Section 5.2.1 I use a practical attack that speculatively bypasses
SSP leveraging architectural overwrites of backward edges. Section 5.2.2 analyzes architectural
overwrites of forward edges, targeting two prominent CFI frameworks, GCC VTV and LLVM
CFIL In the GCC VTV case, I show how the integrity check of the forward edge can be used to
perform a speculative control flow hijack. For LLVM CFI, I conclude that the constraints of its
implementation does not allow SPEAR attacks to be mounted in practice, demonstrating the
importance of careful feasibility analysis. Finally, in Section 5.2.3, I demonstrate two types of
speculative bounds check bypasses in the Go language using speculative overwrites of a forward
edge. I show how the attacker may influence the control flow target through both a load whose

61

address value is attacker controlled and a load of a value that was speculatively overwritten by the
attacker. I demonstrate practical implementation of speculative ROP and LLC eviction techniques
as part of the end-to-end practical attack on SSP, i.e., I implement all the stages in Figure 5.1. I
do not further re-implement them in the case of CFI and Go, where they would equally apply
and where I focus instead on the central part of the attack as a proof of their feasibility, i.e., I
implement only Step 5 in Figure 5.1. Therefore, the success rates reported below refer either to all
the stages together for the SSP case (7.19%) or just the hijack stage for the Go (above 80%) and the
GCC VTV (85%) use cases, hence the large difference.

5.2.1 Attacking stack canaries

Stack canaries are one of the earliest mitigations against buffer overflows [75], and are widely
used to this day. Among the most broadly adopted implementations are LLVM’s and GCC’s Stack
Smashing Protection (SSP) and Microsoft’s /GS. At a high level, stack canaries work by inserting
a value (the canary) between stack buffers and control-flow influencing data on the stack, in
particular the saved return value. The integrity of the canary is then checked prior to using the
saved return value. Local stack variables are reordered such that buffers, likely to be overflowed,
reside adjacent to the canary while code pointers remain further away. This way, contiguous
overflows of local stack buffers can be detected by the integrity check. The chosen canary value is
randomly generated once during process execution start, and stored in a safe location.

Each compiler performs the instrumentation differently but in essence the mechanics are
identical with respect to SPEAR attacks; I therefore focus on the example of LLVM on Linux
x86_64. Implementations consist of two distinct instrumentation atoms. The instrumentation
atoms on my target system are shown in Listing 7. The first, the prologue SSP atom, is placed after
the function prologue and local variable allocation, and is responsible for storing the canary value
on the current stack frame. The second, the epilogue SSP atom, is placed before local variable
deallocation and the function epilogue. It compares for equality between the global and local
canary values; if the values differ, the __stack_chk_fail function is called, terminating the program.
If the local canary value was not modified during function execution, the function returns normally.
I show next that this particular comparison can be the target of a SPEAR attack.

SPEAR attack on LLVM-SSP

The pattern of the SSP instrumentation closely resembles that of Listing 3. Under my threat model,
an attacker with a buffer overflow against a function protected by SSP can perform a SPEAR
architectural overwrite attack of the return value of that function. I describe a practical attack
targeting a version of libpng with a reported buffer overflow (CVE-2004-0597): the bug is not
exploitable in the traditional way owing to the fact that the function is compiled with SSP. I
show how a speculative adversary can exploit the SPEAR architectural overwrite to leak arbitrary
secrets from the victim.

The attack proceeds as follows: in the first step, the attacker overwrites the saved return
address of the victim function. In the second step, the attacker leverages a misprediction in
the conditional jump of the canary integrity check, thus transiently executing a return to the
previously overwritten return address. This PHT-based misprediction is achieved by the attacker
in a way similar to Spectre v1, by executing the canary integrity check with an intact local canary

62

func:
prologue

mov rbx, QWORD[fs:0x28]
mov QWORD[stack_canary], rbx

body

mov rbx, QWORD[stack_canary]
xor rbx, QWORD[fs:0x28]
je exit
call _ stack chk fail
exit:
epilogue
ret

Listing 7: Stack canary check instrumentation example.

sufficiently many times. As discussed in Section 5.1.2, another requirement is that a sufficiently
long speculation window exist. I achieve this by evicting the global canary from the LLC, as
I show in Section 5.2.1. The attacker is then able to perform a side-channel send operation by
constructing a speculative ROP chain to access a secret as I show in Section 5.2.1.

LLC eviction of the global canary

I apply the two-step method described in Section 5.1.2 for the eviction of the global canary from
LLC, and thus from all cache levels by the property of inclusiveness of caches on the target
platform. The global canary value is always stored at a fixed offset in a page: I use this property
to find eviction sets for this particular offset by using the undocumented Intel LLC slice function
reverse engineered by Maurice et al. [85].

The attacker process first identifies a page with a known eviction set and then unmaps it to
be reused by the victim to store its canary. This is achieved with two processes under attacker
control, as follows. At first, one of them maps a hugepage and enters a loop in which it brings an
eviction set into cache and waits for feedback from the second attacker process. The latter in turn
probes its own stack canary and reports back a success as soon as the canary is no longer cached.

Once the eviction set is identified, the attacker releases the page, which is now ready to be
reused by the victim process to store its canary. The page release is done via madvise which
instructs the system about the process memory behavior, in this case indicating that a certain
memory range will not be accessed soon (MADV_DONTNEED). I manually craft the memory area
released by the attacker in order to shift the target page frame in the right position in the kernel
buddy freelist. I empirically verify that the reuse of a page frame for the victim canary page occurs
with 100% success rate when attacker controls victim startup. When the attacker does not control
victim startup, the success rate drops (but remains above 50%), because synchronization is more
difficult and all processes in the system consume resources from the buddy freelist. Factors that

63

W o =

secret
8

shared_array
[rax]

Listing 8: Example of Flush+Reload gadget.

influence the success rate include the order of the page in the freelist, the “distance” between the
release operation by the attacker and the request operation by the victim process. I note that I do
not use any artificial synchronization mechanism between the victim and attacker, which makes
this attack widely applicable.

While data eviction is a common part for speculative execution attacks, I adapt an LLC eviction
technique only used previously in the context of side channels. Existing techniques for Spectre
attacks evict large quantities of data from the caches, lowering success rate. For the SSP attack,
this technique ensures the ROP gadgets executed speculatively remain in cache. Their eviction
would result in the attack failing, because the RSB would be used to predict return location.

Speculative ROP

I now focus on building and using a speculative ROP chain that accesses a secret and leaks it
through a side channel. I use the Flush+Reload cache side channel initially used by Kocher et
al. [10], although other side channels can be used similarly [34, 36, 33].

In Section 5.1.3, I have identified two major constraints on the attack: i) a limited number of
instructions can fit into the speculation window; and, ii) all code pages in which the gadgets reside
must be present and mapped with corresponding TLB entries. In addition to these requirements, I
note that gadget code, as well as any data accessed by gadgets, must be available in cache during
speculative execution. Typically, this is not an issue in speculative execution attacks because
the attacker can run several attack iterations as warm up phase to bring the required data in the
cache, whereas this attack is single shot: the process terminates after each attempt and this is an
additional requirement.

Concerning the first requirement, the Flush+Reload side-channel send gadget only requires
a few instructions: there are sufficiently short gadgets available, and length is therefore not an
issue in practice. For the second requirement instead, I create a tool to search for gadgets in code
that was recently accessed by the victim program, for which pages are present and mapped in
the victim process. The tool traces the victim process and collects all executed shared (library)
code pages, which are then fed into an existing ROP gadget search tool, ROPgadget [88]. I run
the tool on the victim program and find 26 mapped code pages within the 4 different modules
used by the victim: libc, libpng, libz and Id. In total, the tool discovered 2096 gadgets, out of which
406 are candidates for building the side-channel send gadget. Per-gadget occurrences are shown
in Table 5.2. Finally, to ensure that all gadget sequences are in cache, a hyperthread-colocated
attacker performs a ROP chain warm up phase by executing the chain in close temporal proximity
with the SPEAR attack.

I build a 5-gadget ROP chain using the ROP gadgets found by my gadget search tool. The chain
is functionally equivalent to the Flush+Reload gadget shown in Listing 8. The chain accesses a

64

Gadget type Occurrence

pop reg ; ret 262

mov regl, [reg0] ; ret 69
shl reg, 8 ; ret 4

add regl, reg0 ; ret 71

Table 5.2: ROP gadgets used for building Spectre v1 chain with their corresponding occurrences.
The search space is a subset of libc, libpng, libz and Id executable pages, obtained by filtering out
pages unmapped in the victim’s address space and pages without a valid TLB mapping.

target address computed using a secret byte value, as in the initial Spectre attacks [10]. Because
Flush+Reload requires shared memory, I choose the target address to reside in such a shared
memory area between attacker and victim, the first 16 readable and executable pages of the
libpthread library. To leak one byte I use an array size of 256. To avoid prefetching effects during
side-channel receive, I choose the element size to be 256, i.e., four cache lines. The total array size
equals 256 x 256 bytes, 16 pages.

By splitting the Flush+Reload gadget in small sequences of instructions as shown in Listing 8, I
easily find the required gadgets within the constraints of the attack. The ROP chain that I find and
use in the attack is shown in Listing 9. This chain pops the addresses (controlled by the attacker) of
the start of the 16 pages and of the targeted secret from the stack. Next, the secret value is loaded
at line 8. The next speculative gadgets multiply the secret value by 256 and compute the target
address. The last speculative gadget dereferences the target address, resulting in a load being
issued during speculative execution. This eventually brings the value into the cache to be observed
by the attacker. The whole chain therefore allows the attacker to implement a universal read
primitive over the victim process speculatively, using a Flush+Reload attack and the attacker’s
control over the stack.

65

libpng.so0.3.1.2.5 : 0x7960
pop rdx
ret

libpng.so0.3.1.2.5 : 0x7f0a
pop rsi
ret

libpng.so0.3.1.2.5 : 0x128ec
mov eax, dword ptr [rsi]
mov byte ptr [rdi 6a], al
ret

libpng.so0.3.1.2.5 : 0x9f4b
shl rax, 8
add rax, rdx
ret

libpng.so0.3.1.2.5 : 0x9fde
add eax, dword ptr [rax]
add byte ptr [rdi], cl
xchg eax, ebp
ret

Listing 9: Flush+Reload gadget ROP chain.

Attack evaluation and results

The attacker targets the libpng version 1.2.5 which is vulnerable to CVE-2004-0597 [89].

CVE-2004-0597 is a stack buffer overflow which allows the attacker to read length bytes in
readbuf. Due to improper sanitization of length, a read larger than PNG_MAX_PALETTE _LENGTH
is allowed in a stack buffer. The target victim is a program that receives a .png file and parses the
file using the unpatched libpng-1.2.5. When building the victim target with stack canaries enabled,
the compiler will instrument png_handle_tRNS with the corresponding prologue and epilogue
SSP atoms. As expected, SSP protects png_handle tRNS from exploitation by stopping execution
before the function returns. However, using a SPEAR architectural overwrite attack, I can perform
a speculative control flow hijack. During the SPEAR attack, the attacker feeds .png files of the
legitimate length to train the pattern history table to bypass the stack canary check. Then, the
attacker provides a length larger than PNG_MAX_PALETTE_LENGTH that overwrites the value of
the return address to trigger the speculative ROP attack.

I confirm the attack works and leaks bytes at arbitrary, attacker-chosen addresses from the
victim memory, on Intel Skylake and Coffee Lake with latest microcode updates, and on Ubuntu
16.04 and 18.04 (both with kernel version 4.15.0) with all default Spectre mitigations enabled.
Namely, both setups include __user pointer sanitization and usercopy/swapgs
barriers mitigations against Spectre v1. Moreover, default mitigations against Spectre v2 are
present (retpoline, IBPB, IBRS_FW, and RSB filling), excepting STIBP which is disabled on Ubunutu
16.04. I report the attack evaluation results on Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz
(Skylake) running Ubuntu 16.04.6 with kernel version 4.15.0. As described in Section 5.1, the attack
has an initialization phase where eviction sets are identified, memory used by the side channel
is flushed and the ROP sequence is primed. Concurrently with the submission of the malicious

66

void

png_handle_tRNS(png_structp png_ptr,
png_infop info_ptr,
png_uint_32 length)

png_byte readbuf[PNG_MAX_PALETTE_LENGTH] ;

if (png_ptr--color_type PNG_COLOR_TYPE_PALETTE) {
if (! (png_ptr--mode PNG_HAVE_PLTE))

{

png_warning(png_ptr, "Missing PLTE before tRNS");
N

J

png_crc_read(png_ptr, readbuf, (png_size_t)length);
png_ptr->num_trans (png_uint_16)length;
}

Listing 10: libpng vulnerable snippet related to CVE-2004-0597

payload, the attacker also runs the eviction loop to lengthen the speculation window by causing
the eviction of the stack canary in the victim.

I measure the attack success rate as the number of times the attacker is able to correctly guess
a secret byte from the victim memory space, per total number of runs. I report means over 100
runs with 95% confidence level. The end-to-end attack success rate is 7.19% + 0.62, for a single run.
In practice the attacker does, as in most other Spectre attacks, re-run the attack as many times
as necessary to improve its guesses and reach close to 100% success rate. Therefore, I compute
the leakage rate based on the attack time, which is measured as the full duration of repeating
the attack 100 times against the re-startable victim. The duration includes the restart time of the
victim and the attacker execution time. The end-to-end leakage rate of victim bytes is 0.3 bytes
per second (with all correct guesses), which I deem sufficiently high for practical use. Due to
different binutils versions in the two distribution versions, I observe a slight leakage rate drop in
the Ubuntu 18.04 environment.

For improving the success rate, and therefore improving the leakage rate of the end-to-end SSP
attack, one needs to improve the success of each individual stage of the attack showed in Figure 5.1.
In addition, the attacker may run too fast or too slow with respect to the victim (the attacker
simply attempts to synchronize with busy loops), which can also lead to failure of the attack. I
have verified such synchronization is successful in my PoC in 78% of cases. I already report in
Section 5.2.1 results for the LLC eviction stage: 100%. Because changes to the victim can affect
the success rate, measuring the success of other individual steps within the end-to-end PoC is
very difficult. However, based on these numbers and experiments outside the PoC, I infer that the
greatest area for improvement in the leakage rate should come from improving the ROP gadget
phase (e.g., limiting cases where the gadget code is not in cache) and side channel receive/send

67

(e.g., limiting cache noise from eviction activity and other sources, or using another side channel).

5.2.2 Attacking CFI

Control Flow Integrity (CFI) of forward edges aims to protect the integrity of code pointers used
in indirect calls and jumps. CFI implementations contain two main parts: instrumenting all
indirect control transfers to check their validity at runtime, and classifying valid control flow
transfers (typically using static analysis at build time). I analyze here two prominent cases: the
GCC Virtual Table Verification (VTV) [90] mechanism to prevent c++ virtual table corruption, as
well as LLVM-CFI [91], a publicly available, low overhead, forward-edge CFI implementation. In
the GCC VTV, I prove that a SPEAR attack is possible, while in the LLVM-CFI case I conclude
that eviction-related considerations result in the speculation window being too short for practical
exploitation. In particular, this case study demonstrates that I cannot conclude that SPEAR attacks
apply equally to all implementations of memory safety-related defenses, and case-by-case analysis
is necessary.

GCC VTV

In the GCC VTV implementation, for every call to a virtual function in the program, the compiler
inserts a check to make sure that the pointer used for the indirect call belongs to the virtual
table of the object. Such check is represented by a call to the function __ VLTVerifyVtablePointer
implemented in [ibvtv.so library. Within this function, the pointer is looked up from the table;
if found, the function simply returns to the program which will perform the call, otherwise, it
gracefully fails. If an attacker can successfully evict the cache line related to the variable the
pointer is tested against, speculative execution is triggered during the evaluation of the check.
In that case, the indirect call to the virtual function is speculatively executed and the code at the
corrupted pointer is executed. At this point, the attacker has performed speculative control flow
hijack and can mount a data exfiltration attack as described in Section 5.2.1.

In my proof-of-concept implementation of this attack, I artificially evict from all cache levels
the variable related to the vtable of the object within the libvtv.so code. Then, I create a c++
program that defines two different classes each containing one virtual method. The first class is
my target for the forward edge overwrite. To verify whether speculative control flow hijack takes
place, I instrument the program to read performance monitor counters and set the speculative
control flow hijack target to contain a speculation marker. I use the second class to instantiate the
object that is later corrupted.

After object initialization, I perform a vtable pointer overwrite in my victim object making it
point to the vtable of the first class. Finally, I perform the virtual call for the control flow transfer
which is instrumented by GCC VTV with a call to the integrity check inside the libvtv.so library.
During normal execution, this overwrite is detected by the library which reports the corruption
and prevents the control flow transfer by terminating the application. With a SPEAR attack as
described here, I verify that control flow hijacking occurs in 85% (n=1000), demonstrating that a
SPEAR architectural forward-edge attack is viable against GCC VTV. I note also that the redirection
is performed to a vtable of a completely unrelated class, a case which should be prevented by
VTV. A real-world attack would additionally require evicting the compare variable, for example

68

I3 B N VO R

type slice struct {
array unsafe.Pointer
len int

cap int

Listing 11: Arrays in Go.

by using the same method as in Section 5.2.1, as well as a way of achieving a side-channel send
for the attacker, as in Section 5.2.1.

LLVM CFI

The CFI solution implemented in LLVM uses function types as equivalence classes: an indirect
call to a function of a different type than the one specified by the programmer is forbidden by
the CFI instrumentation. This is achieved by placing functions of an equivalence class in a jump
table, thereby having as many jump tables (whose addresses are carefully chosen) as equivalence
classes. The instrumentation for indirect calls then consist in simply checking that the address of
the target fall within the range of the jump table, and at the right alignment.

This range check can be seen as a check against a compile-provided constant value, using
the address of the provided target. Both of these components are by design available and cached
while performing this check: evicting the code that contains the range check would result in
speculative execution stopping, and evicting the address of the target would result in the iBTB
being used for speculative execution. In either case, a SPEAR attack would fail. The attack may be
triggered without any attempt to artificially extend the speculation window, but, as demonstrated
experimentally in Section 5.1.2, the resulting speculation window is rare and short, making such
attacks unlikely to be practical. I conclude that LLVM CFI is in practice not vulnerable to SPEAR
attacks.

5.2.3 Attacking memory safe languages

Most modern languages are designed to ensure memory safety. Instrumental to achieving this
property are bounds checks for load and store operations into arrays. In this section, I show how
bounds checks may be speculatively bypassed, allowing the transient execution of out-of-bounds
load and store operations. I show under which conditions this leads to a SPEAR attack.

I focus in this case study on the popular Go programming language, runtime and compiler. I
present two variants, one where data that influences a forward control flow edge is architecturally
overwritten and one where a forward edge is speculatively overwritten. In either case, the attacker
is able to achieve a speculative control flow hijack. I prototype both variants and show the
conditions under which the attack succeeds at a rate exceeding 80%.

Before detailing the two attacks, I give a brief introduction to the way the Go compiler
manages arrays and bounds checks. Arrays in Go are represented in memory as the struct shown
in Listing 11. The address of the contiguous chunk of virtual memory backing the array is stored
in array. The number of elements that array can hold (and implicitly the size of the memory

69

W o =

1

mov rcx, [array]
cmp [array+0x8], rax

jbe runtime.panicindex
mov rax, [rcx+rax 8]

Listing 12: Bounds check in Go.

array[index].function()

Listing 13: Load-based speculative control flow hijack code pattern.

chunk since Go is statically typed and the size of the elements is always known) is stored in cap.
The current number of elements that have been stored in the array is stored in len.

Whenever an array access is performed in Go, the compiler will add appropriate bounds
checks. This is achieved in the course of the compiler pass to translate the abstract syntax tree
(AST) into the static single assignment (SSA) intermediate representation by adding an IsInBounds
meta-operation before every array load or store. IsInBounds takes two arguments, the index of the
current access and the length of the array, and drives a conditional jump either to the basic block
that performs the array access if the index is between zero and length minus one, or a jump to a
function that raises a panic otherwise.

IsInBounds is translated by later passes into a sequence of instructions similar to the one shown
in Listing 12. The snippet shows a load from an array of integers: at first rcx is loaded with the
address of the memory array, a compare instruction is issued between the index of the array
access in rax and the array length at array+0x8. If the index is negative or not strictly less than the
length, the code jumps to a call to the runtime.panicindex function. Otherwise the array access is
performed.

The conditional jump generated by the IsinBounds meta-operation may speculatively execute
the wrong jump target and perform a transient load or store operation out of bounds. I show two
distinct code patterns, one leveraging a load and one a store, that may lead to speculative control
flow hijack.

Load-based SPEAR speculative attack

The first pattern is shown in Listing 13. It represents an instance of a SPEAR-speculative attack
and consists of an interface function call, where the interface is stored into an array of interfaces
array, dereferenced at position index. Note that the array must be an array of interfaces so that
calling the function is achieved by an indirect call. For the attack to be successful, I need index
to be attacker-controlled and the attacker must be able to store the value of two pointers in the
memory space of the target process at a known location.

The first condition is met whenever a process accesses an array using an index that is received
as an external input. The second condition is very commonly met since programs store user-
provided input for processing. Knowledge of the location of the stored pointers depends on the

70

= - T T N o R R

type iface struct {
tab itab
data unsafe.Pointer

1
J

type itab struct {

inter "interfacetype
_type "_type

hash uint32

. [4]byte

fun [1]uintptr

Listing 14: Structs used by interface calls.

fake iface:
x0000: fake itab
x0008: x0000000000000000

fake itab:

x1000: x0000000000000000
x1008: x0000000000000000
x1010: x0000000000000000
x1018: CFH target

CFH target:
x2000: attacker code

Listing 15: Memory layout in preparation for the exploitation of load-based speculative control
flow hijack. The attacker fake iface starts at offset 0x0. The fake itab prepared by the attacker
starts at offset 0x1000. The control flow hijack target is located at offset 0x2000.

memory area being used, and is aided by the deterministic nature of the Go allocator.

Without loss of generality, I describe the case where function is the first function defined by
the interface. Exploitation proceeds as follows: first, the attacker prepares the memory structures
that are used when an interface call is performed. The structures are shown in Listing 14, and are
used by dereferencing the tab pointer from the iface struct and then calling into the fun array.

In preparation for exploitation, the attacker ensures that the memory layout of the target
program contains a pattern similar to that shown in Listing 15. Assuming that the attacker wants to
speculatively redirect the control flow to address 0x2000, the attacker creates a fake itab structure
(in the example at 0x1000) such that the first entry in the fun pointer array points to the desired
target. Then the attacker creates a fake iface structure (in the example at offset 0x0) such that
the tab pointer points to the aforementioned itab structure. With the memory thus prepared,
the attacker supplies the index into the array such that the resulting address (the base address
plus index multiplied by the size of an iface structure) equals the fake iface structure (0x0 in my

71

array[index] = value

interface.function()

Listing 16: Store-based speculative control flow hijack code pattern.

example). With the index thus set the program will call the runtime.panicindex function; however
if the conditional jump of the bounds check is mispredicted, the dereference and subsequent
indirect call will take place transiently. Note that, contrary to the case studies in Section 5.2.1 and
Section 5.2.2, the attack is not necessarily “single shot”: if the program calls recover, the attacker
might be able to execute the vulnerable sequence multiple times.

I prototype the attack to evaluate its effectiveness in a proof of concept. The proof of concept
only aims to establish the feasibility of the attack: in particular I do not integrate into an end-to-end
attack and refer to Section 5.2.1 for cache eviction and speculative ROP. The PoC contains the
pattern of Listing 13 called in a loop to train the pattern history table and ensure that the bounds
check conditional jump as strongly non-taken. The index used to access the array in the loop is in
bounds during the training phase and is then set to the target index computed as described above
in the last iteration.

To verify whether speculative control flow hijack takes place, I instrument the program to
read PMCs during the execution of the loop, and set the speculative control flow hijack target to
contain a speculation marker. The runtime.panicindex function is modified to read and persist
PMC values for each execution.

This instrumentation permits us to verify that speculative control flow hijack indeed takes
place. The success rate is influenced by several factors that I review here. The most relevant
factor is the size of the speculation window, which is influenced by how quickly the correct jump
target is determined. The speculation window is maximized if the variables used in the compare
instruction that drives the jump — especially the array length — are not present in any of the levels
of the cache. In order to get empirical evidence of this fact, I instrument the program with a clflush
instruction right before the array dereference to ensure that the array length is not cached. In
practice, an attacker may achieve the same result by performing cache eviction code sequences.
However flushing the cache alone does not ensure a high success rate: this is because the array
length is stored right after the base address of the array, whose address is loaded into memory as
the first instruction of the dereference sequence. I verify that if the two memory locations belong
to different cache lines, the speculation window is maximized. Another factor that influences the
success rate is whether the target of the speculative control flow hijack is already in the instruction
cache. I make sure that this be the case by insert a call to the marker function in the warm up phase
before the loop. I report success rates exceeding 80% (n=1000) when the array length is flushed
and is in a separate cache line as the base address on multiple platforms (Xeon CPU E5-2640, Core
17-8650U, Core i7-6700K) and different versions of the Go runtime (1.13.4, 1.12, 1.10.4).

Store-based SPEAR speculative attack

The second pattern is shown in Listing 16.

72

The pattern consists of a store operation of an attacker-controlled value at an attacker-
controlled location into an array. The elements stored in the array must permit storage of a
pointer. Smaller sizes would permit partial control over the speculative control flow hijack target.
The pattern requires that the array store be followed by an interface call. The interface call does
not need to be related to the array. It only needs to be in close proximity of the store operation so
that it may still be speculatively executed. This pattern does not require any ability to perform
preparatory store operations in the memory space of the target program. The pattern makes use of
store-to-load forwarding, since the store in the array is used to (speculatively) overwrite a function
pointer which is later (speculatively) loaded and called. This corresponds to the “speculative
overwrite of forward edge” variant of a SPEAR attack.

The store part of the pattern consists of a speculative version of a “write-what-where” condition.
It may be exploited in several ways to hijack the interface call: the most basic one would be to
overwrite the tab pointer in the iface struct (see Listing 14). However this would either require the
attacker to perform a set of preparatory stores identical to those discussed in Section 5.2.3, or it
would restrict the freedom of the attacker to choose a target out of the existing interface pointers.
Another strategy would be for the attacker to overwrite the fun pointer in the itab structure
directly. These structures are stored in a non-writable virtual memory region. However, given
that the store takes place speculatively, the attacker is able to bypass the write restrictions and
overwrite the pointer. Therefore, I choose to prototype this simpler and more effective variant.

Exploitation proceeds as follows: at first the attacker speculatively overwrites the fun pointer
in the itab of the interface that is later dereferenced. This is achieved, as the attacker controls value
and index. The former is set to the address of the desired speculative control flow hijack target;
the latter is set such that base array and index multiplied by the size of the array elements add
up to the address of the fun pointer to be overwritten. As in the previous section, with the index
thus set the program will panic; however if the bounds check is mispredicted, the store-to-load
forwarding and subsequent indirect call will take place, achieving speculative control flow hijack.

I prototype the attack to evaluate its effectiveness employing a similar instrumentation as
the previous section, with PMCs and speculation markers employed to identify successful runs,
and a loop to set the predictor state. The success rate is similarly influenced by ensuring that
the variables driving the conditional branch are not cached, and that the speculative control flow
hijack target is in cache. Under these conditions, I report success rates exceeding 80% (n=1000) on
the same platforms listed in Section 5.2.3.

5.2.4 SPEAR attack against Rust bounds checking

The implementation of Rust panicking mechanism is abundant of SPEAR speculative control flow
hijacking patterns similar to those discussed in the Go case study (Section 5.2.3). Here, I examine
the safety features employed by Rust for index expressions and demonstrate a proof of concept
SPEAR attack against out of range access hardening.

In Rust, memory safety for index expressions is established during Mid-level Intermediate
Representation (MIR) building, with static and dynamic arrays, slices and strings being subject to
sanitization. At compiler level, index expressions are instrumented with bounds checks which
prevent out of range access. However, similarly to the case of Go, CPU misprediction of bounds
check outcome leads to speculative out of bounds access.

The attack targets the array index access followed by an indirect call in Listing 17 at line 9. To

73

= - N T I N SR RN

= B - N T N O

=)

const

PADDING SIZE: usize 7 ¢

pub type Fptr fn(u64) u6b4;

pub struct Data {
_padding: [u64; PADDING_SIZE],

buf:

}

Box<[Fptr]>,

let data: Data Box: :new(Data { ... });
data.buf[index] () ;

Listing 17: SPEAR speculative control flow hijacking target in Rust. The index value is attacker
controlled. I assume that the attacker writes the CFH target in memory prior to the attack.

mov
mov
cmp
jle

call

mov
mov

rsi, [index]
rax, [buf len]
rsi, rax
ok
core: :panicking: :panic_bounds_check

rcx, [buf]
rdx, [index]

call QWORD[rcx+rdx™ 8]

Listing 18: Disassembly of rust index expression bounds check instrumentation.

74

trigger the panicking system, the array is accessed with an attacker controlled index which is out
of bounds. Rust MIR instruments the array index access with a bounds check. I analyze the index
expression bounds check instrumentation at Assembly level in Listing 18. The instrumentation
starts with array length loading and comparison against the attacker provided index, at line 3.
Depending on the comparison outcome, the execution proceeds with accessing the array element
requested or aborting in case of in-bounds requirement violation.

When the comparison between index and length is slow (due to uncached operands), the CPU
may mispredict the result and continue execution speculatively, on the wrong path.

In the PoC, the victim data structure is chosen such that the array length can be evicted prior
to the attack. The array length is stored together with the array data pointer in buf. At line 8 the
Data object is initialized using Box, therefore the object is placed on heap. This avoids Rust default
stack allocation which lowers the array length eviction success. Furthermore, the eviction may
affect attack critical data, like the buf data pointer. In the PoC, Data uses a large enough padding
so that the array length and the data pointer land on different cache lines.

The buf length eviction triggers mispeculation of the jump direction taken (Listing 18, line 4).
Inside the speculation window, an out of bounds array access with the attacker controlled index
leads to reading a function pointer from an attacker-owned memory area. Subsequently, the
attacker controlled function pointer is the call instruction destination (line 10), therefore facilitating
speculative execution of attacker chosen code (in this case, a speculation marker). Despite of the
CPU rolling back the speculative execution effects on registers and memory, I use Intel Performance
Monitoring Counters for counting speculation marker hits. I carry out the experiments on an
Intel Skylake machine running Ubuntu 18.04. I measure an overall success rate of 90% (n=1000)
for the SPEAR attack against Rust bounds checking mechanism. As for Go and GCC VTV, this
success rate refers to the hijack phase only.

5.3 Mitigations against SPEAR

In this section, I implement and analyze serializing-based (Ifence) and masking-based mitigations
for SPEAR-architectural attacks (SSP) in Section 5.3.1 and SPEAR-speculative ones (Go) in Sec-
tion 5.3.2. I show that in both cases the masking-based solution results in a low overhead. Finally,
I discuss possible mitigations for GCC VTV case in Section 5.3.3.

5.3.1 Mitigations for SSP

I investigate two possible mitigations for the SPEAR-architectural attack against SSP. A serializing
instruction such as Ifence can be inserted after loading the canary in the epilogue instrumentation,
thereby ensuring that the comparison can only lead to a short enough speculation window.
Alternatively, the return value can be masked architecturally with a generated value that is set to 0
when the check fails (the canary is corrupted), and all ones when it passes, as shown in Listing 19.

I implement both mitigations as compiler passes in clang+llvm. The masking-based mitigation
implementation is an extension of Speculative Load Hardening [38]. SSP is architecture specific,
therefore my solution is built for x86_64 Linux systems. I run the SSP mitigations benchmarking
on Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz. I measure the normalized runtime of both return
address masking and Ifence on SPECint CPU 2006. The normalized runtime is computed as runtime

75

e % T N P R

mov rax, QWORD[fs:0x28]

mov rcx, QWORD[stack_canary]
xXor rdx, rdx

cmp rax, IYCX

setne dl
add rdx, Oxffffffffffffffff
and QWORD[rsp 8], rdx

Listing 19: Masking mitigation sequence; rax contains global canary value and rcx contains the
stack canary; rsp+8 points to the return address.

over the baseline runtime constituted by execution with SSP Disabled. For reference, I additionally
plot the normalized runtime for all existing SSP implementations, SSP Loose (-fstack-protector
flag), SSP Strong (-fstack-protector-strong flag), and SSP All (-fstack-protector-all flag).

The results are shown in Figure 5.3a. The Ifence mitigation shows a high overhead in 9 out
of 12 benchmarks, the highest being 100%, in the SSP All case with xalancbmk. Return address
masking incurs a significantly lower, albeit still not negligible performance penalty, reaching a
maximum of 13% for the same benchmark.

Based on this evaluation, I find the return address masking mitigation to be viable and superior
to the [fence mitigation: the overhead of vanilla SSP (shown in Figure 5.3b on SPECint CPU 2006 is
at most 9%, in the case of SSP All on xalancbmk). In addition, I note that most Linux distributions
either use the SSP Loose or SSP Strong options, both of which incur a low overhead on all SSP
benchmarks: I record a maximum of 2.1% overhead over the SSP Disabled baseline. With return
address masking, the maximum overhead becomes 2.7% over the SSP Disabled baseline. I conclude
that return address masking does not impose a significant overhead with the most commonly
used SSP compiler options.

5.3.2 Mitigations for the Go compiler

I investigate possible mitigations for the SPEAR-speculative attack on Go. The mitigations consist
of two different compiler passes that ensure that the vulnerability is no longer exploitable. The
first is based on Ifence, whereas the second is based on branchless index masking sequences. As
part of responsible disclosure I have notified the Go team, who have implemented 2 families
of compiler-based mitigations for Spectre, namely, index masking (through the -spectre=index
compiler switch) and retpoline (through the -spectre=ret compiler switch).

The feature was released as part of Go 1.15 [92].

The first mitigation consists of adding an [fence instruction after the cmp instruction in the
sequence that implements the IsInBounds meta-operation. With reference to Listing 12, the Ifence
instruction is inserted after the cmp on line 2. The insertion ensures that all prior instructions have
completed, which means that there will be no misprediction of the branch target and any out-of-
bound access will result in a panic with no transient execution. The instruction is added explicitly
in the pass that translates the AST into SSA form by defining a new Lfence meta-operation and
adding it after each IsInBounds operation. I ensure that the operation is neither reordered nor
eliminated.

76

Masking SSP Loose Masking SSP Strong Masking SSP All

CIEJ I LFENCE SSP Loose I LFENCE SSP Strong I LFENCE SSP All
51-5; 1.8 15 1.7 |1.7 2.0
€ 1.01
2
2 0.5
N
©]
go-o 1 1 1 1 1 1
S NN 2 > T | X e
Z & N F ¢ S & . & ,@@ bb$® ?}QQ BN
O Q > 97 0O <) e A & ? O
s WL Y o P&
e O X 6 o O & o A X
O ™ %) DSOS ™ ™)
O I M N vo b/‘\'\// 0)-/\-
(a) SSP with speculative bypass mitigations.
SC_J I SSP Loose [SSP Strong m SSP Al
£ 1.5+
(@)}
£]
€ 1.0
E]
2 0.5 1
N
©]
€ 0.0-
oY N <
S S & o & R R N I
& V7 o & N & o @ v O
NI S A S R OISO
oY ™ SN N SN SV ,bj-"’
NS b‘éll/ ke N

(b) Vanilla SSP.

Figure 5.3: Overhead computed as normalized runtime over SSP Disabled baseline.

77

® N o A W N =

rcex, rdx
raise-panic
rbx, rdx
rdx, rcx

rcx, rex
rcx, rbx
rcx, 0x4
rax, [rax+rcx' 1]

Listing 20: Masking mitigation sequence; rdx contains the index and rcx contains the length of
the array and rax contains the base address of the array.

The second mitigation I investigate entails the addition of an appropriate masking sequence
that ensures that the index is set to a “safe” value in case of out-of-bounds accesses. The masking
sequence amounts to a no-op in case the access is in bounds by performing an and operation on
the index with a sign extended -1 mask. If the access is not in bounds, in my implementation, the
masking operation forces an access of the element at index 0 in the array by performing an and
operation on the index with a 0 mask. I can see the masking sequence in Listing 20: after the usual
cmp and jmp instructions, length and index are subtracted in order to set the carry flag. Then,
the sbb instruction is used to set a register to -1 in case of an in-bounds access or 0 otherwise.
The array is subsequently accessed after performing an and operation on the index with the mask
thus obtained. The pattern might be further optimized by using the cmp instruction of the bounds
check to set the carry flag. This, however, is not always possible since the compiler will use a
compare instruction with an immediate whenever possible. The immediate can only be the second
source operand, forcing the direction of the comparison instruction. For the sake of simplicity I
therefore rely on an extra subtraction operation. The masking instruction sequence is added by
defining three new meta-operations — OpMaskStep1, OpMaskStep2 and OpMaskStep3 — which are
later lowered into a sub, sbb and and instruction, respectively.

I measure the overhead of both mitigations by building the Go runtime version 1.12.0 and
running the full benchmark suite. I run the experiments on a 40-core Xeon E5-2640 machine
with 64 GiB of RAM. Figure 5.4 displays the empirical cumulative distribution function of the
overhead of each of the two mitigation strategies. I can see how the [fence-based approach
incurs a high overhead (143% mean and 84% median) due to the fact that Ifence will terminate
any speculative execution and thus severely curtail the instruction throughput. On the other
hand, the masking approach shows a much lighter overhead (12% mean and 6% median) since the
instructions involved are simple and do not cause any memory-related operation.

5.3.3 Mitigations for GCC VTV

The same mitigations considered in Section 5.3.1 and Section 5.3.2 work in the GCC VTV use
case. Serializing mechanisms (e.g., lfence) are a viable solution, albeit likely with high overhead.
A branchless masking solution or retpoline could also be used in this context for what I expect to
have better performance, however I did not implement these.

I believe a better approach, from a performance point of view, for GCC VTV would be a

78

= masking //- /

—Ifence / /

0.8

o
»
\\

probability

©
~

0
107 10° 10" 10° 10 10

overhead

Figure 5.4: Empirical CDF of the logarithm of the overhead percentage for the considered mitiga-
tions. Overhead data is gathered by running the full set of benchmarks of the Go runtime version
1.12.0.

re-design with the principles observed for LLVM CFI described in Section 5.2.2 where the metadata
and the pointer that have to be verified co-exist within the same cache line. This condition prevents
the attacker to achieve the correct data eviction and, consequently, the speculation window to
perform the attack is too small.

5.4 Discussion on SPEAR

Applicability to other use cases.

Beyond the highlighted use-cases, SPEAR attacks may be employed against other targets. For
example, other memory-safe languages may be targeted with SPEAR attacks to speculatively
bypass bounds checks as I show for the Go programming language. Preliminary investigation
suggests that this is likely to be possible, since instruction sequences for bounds checks similar to
those detailed in Section 5.2.3 are also present in Rust and java (for JITted blocks). I analyze in
more detail the Rust use case and report my findings in Appendix 5.2.4.

79

Theoretically, any security check that directly or indirectly gates a control flow transfer may
be turned into a SPEAR attack. For instance, all the heap hardening mechanisms that verify the
integrity of the heap metadata and pointers within libc can potentially lead to one of the SPEAR
variant through the speculative use of a corrupted data to decide the application control flow.
However, as demonstrated in the LLVM CFI case, a case-by-case analysis is necessary to establish
whether SPEAR attacks are applicable.

Data leaked in SPEAR-architectural attacks.

SPEAR attacks allow an adversary to leak sensitive information from the victim address space. In
the case of SSP, I demonstrate that arbitrary memory can be leaked, one byte per iteration. While
I can target any memory location, I cannot target data that is not deterministic across runs. In
particular, I cannot target to leak the stack canary, given that its value is re-randomized at every
program start. I note that SPEAR-speculative attacks do not have this constraint, given that they
do not require a program restart.

General applicability of speculative ROP.

The speculative ROP and LLC eviction techniques are demonstrated as part of the SSP, SPEAR-
architectural overwrite of a backward edge, use case. Nevertheless these techniques are generally
applicable for the exploitation of other SPEAR use cases, with exploitability always depending on
the scenario at hand. For the general forward edge cases, I note that this requires, as in classical
ROP attacks, a technique known as a stack pivot, which consists in the attacker setting up a fake
return stack somewhere under its control in memory, and having the first control flow hijack
point to an instruction setting the stack pointer to that address (for instance, the push rax; pop
rsp; ret stack pivot gadget). Using the Speculator tool, I verify that such stack pivots do work for
SPEAR-architectural as well as SPEAR-speculative attacks.

General applicability of LLC eviction.

In my end-to-end attack over SSP, I employ a new more precise LLC eviction technique which is
described in details in 5.2.1. The necessity for developing my own, more precise, LLC eviction
technique stems from the fact that my attack poses two additional requirements. The first is the
fact that I require the eviction process to be very selective, since I cannot allow elements such
as the addresses injected on the stack or the gadgets code to be evicted because that will stall
speculative execution and prevent the completion of the attack. The second is that the eviction
process needs to complete within a short amount of time to avoid the scenario where the line
containing the canary is first evicted and then re-cached by the natural execution of the victim
while the eviction process completes. With my technique, I can keep the number of possible
cache-sets as small as possible and therefore minimize the length of the eviction process. I explore
an existing LLC flush method discovered by Oren et al. [93] which could potentially fit the second
requirement. However, I conclude that this method is too intrusive in a setting where the attacker
relies on cached data and code (victim secret, ROP gadgets) available in the speculation window.

80

Disclosure

I submitted the PoC exploits and my findings to the Go security team on November 22nd, 2019. As
a result of my notification, the Go security team has deployed hardening measures (index masking
and retpoline) which were released in Go 1.15.

5.5 Testing Tools

In this last part of my dissertation, I analyze and use the 4 state-of-the-art tools to discover if a
system is vulnerable to transient execution attacks. I divide the tools into two main categories:
information gathering and empirical.

5.5.1 Information gathering tools

These tools use the kernel, the cpuid instruction and the microcode version as sources to col-
lect the necessary information. The kernel provides information about Spectre and Meltdown
vulnerabilities through the sysfs virtual file system interface. They use the cpuid instruction to
determine if the CPU supports mitigations such as IBRS. Due to the differences among the Linux
distributions and the way the necessary pieces of information are presented by the several Linux
kernel versions, these tools must constantly be adapted to parse information correctly on all the
different distributions.

The spectre-meltdown-checker [94] script was released soon after the disclosure of Spectre and
Meltdown. This script inspects the local system for information related to transient execution
patches. The spectre-meltdown-checker script even understands if the kernel space is hardened
against transient execution attacks by also disassembling the kernel image and counting the
number of Ilfence instructions. The tool is constantly updated by the community with tests for
all the newly disclosed attacks. It is considered the state-of-the-art tool for verifying the system
status.

The mdstool-cli [95] tool was published together with the disclosure of the RIDL vulnerability
to the public. It aims to detect if the system is vulnerable to such attacks and previously discovered
ones. As for SPECTRE-MELTDOWN-CHECKER, MDSTOOL-CLI inspects locations inside the system such
as sysfs and the results of the cpuid instruction. While more recent, MDSTOOL-CLI is less exhaustive
compared to SPECTRE-MELTDOWN-CHECKER and only checks whether the CPU self-reports itself
as vulnerable to a specific class of attacks. Mitigations status and availability information are also
gathered but they are not factor in the final report.

5.5.2 Empirical tools

As the name suggests, these tools use an active approach to assess if the machine is vulnerable or
not to transient execution attacks. The tools under this category run several tests to verify the
presence of the attack vectors of each of the known transient execution attacks. Each test emulates
a specific attack and determines whether the transient execution attack is feasible. Two methods
can be employed to make the final determination: either cache side channels or Performance
Monitoring Counters (PMCs).

81

The approach with PMCs is less noisy than the cache-based ones and provides a more accurate
determination about the presence or absence of the attack vector. The main drawback of using
PMC:s is their limited availability on virtual machines: they are rarely virtualized.

Transient Fail was released by Canella et al. [9]. It includes a series of empirical tests/PoCs
that cover all the known transient execution vulnerabilities. This tool attempts to trigger the
vulnerabilities locally and determines whether the attempt is successful by observing micro
architectural side effects on the cache. Based on those, it is possible to infer whether a specific
attack vector is present in the tested system.

Speculator [82] leverages CPU performance counters to evaluate speculative execution. I
extend SPECULATOR with tests for each known transient execution attack since they are not
available in the original version of the tool. I use markers presented along with SPECULATOR [82]
as signals to verify whether the attack was successful. This mode of operation differs from the
one used in TRANSIENTFAIL that relies instead on known cache side-channels (e.g., Prime+Probe,
Flush+Reload). While Das et al. [96] suggest that PMCs should not be used in security applications
to detect attacks, Mambretti et al. [82] prove instead that they can be reliably used to monitor
tests results in the context of transient execution attacks. Moreover, SPECULATOR implementation
carefully follows Das et al. [96] guideline to eliminate common mistakes in PMC usage.

1 ||[CVE-2017-5715 aka 'Spectre Variant 2, branch target injection'
2 | * Mitigated according to the /sys interface: YES
(Enhanced IBRS, IBPB: conditional, RSB filling)

*

4 Mitigation 1

5 * Kernel is compiled with IBRS support: YES

6 * IBRS enabled and active: YES

* Kernel is compiled with IBPB support: YES

8 * IBPB enabled and active: YES

9o | * Mitigation 2

10 * Kernel has branch predictor hardening (arm): NO
11 * Kernel compiled with retpoline option: YES

12 * Kernel supports RSB filling: UNKNOWN

13 (kernel image missing)

14 |> Status : NOT VULNERABLE (IBRS + IBPB are mitigating the vulnerability)

Listing 5.1: Sample output from a commonly used tool to check vulnerability of a system against
transient execution attacks

At the time of my analysis, SPECTRE-MELTDOWN-CHECKER and MDSTOOL-CLI were last updated
at the end of May 2019, while TRANSIENTFAIL on August 2019. Another tool, called SafeSide [97],
is under development with the same goal and design of TRANSIENTFAIL. However, due to the early
stages of the tool when my experiments were run and its great similarity with TRANSIENTFAIL, I
decided not to include it in my comparison.

5.6 Methodology

In this section, I describe the methodology I follow to evaluate the tools. At first I describe a few
meaningful contexts in which the tools may be run: I focus on 6 practical use cases in which a

82

CPU Family Kernel
Intel Ivy Bridge 4.15.0

Intel Haswell 4.15.0
Intel Broadwell 5.0.0
Intel Skylake 4.15.0

Intel Kaby Lake 4.15.0
Intel Kaby Lake R~ 4.15.0
Intel Cascade Lake 4.15.0
AMD Ryzen 4.15.0
AMD Ryzen 2 4.15.0

Table 5.3: CPU families the tools have been tested with the corresponding kernel version

system administrator may want to execute one or more of the tools to measure the degree of
security of their system against a speculative adversary, keeping the use case of that system into
account. I also describe the systems in which I tested the various tools.

5.6.1 Use Cases

This section details the use cases I considered to evaluate the impact of transient execution attacks.
I categorize use cases based on the security domain at which attacker and victim operate. The
considered cases are the following.

« Sandbox to process (S-P): I consider an attacker running sandboxed code, such as Javascript,
eBPF, or NaCL [98], aiming to leak data from the process that runs the sandbox.

« User to user (U-U): I consider an attacker controlling an unprivileged process, targeting a
privileged process such as a process running as root on the same machine.

« User to kernel (U-K): I consider a local attacker targeting an OS kernel.

« VM Guest to Guest (G-G): I consider an attacker that controls a VM guest OS, and targets
other VM guests running on the same host.

» VM Guest to Host (G-H): I consider an attacker that controls a VM guest OS, and targets the
hypervisor (also known as VM Monitor).

 Host to SGX (H-SGX): I consider an attacker in control of the system (i.e., able to load its
own kernel) targeting an SGX enclave. SgxPectre [99] presents a series of attacks in this
setting, exploiting different variants of Spectre v2.

5.6.2 Systems and Platforms

This section describes the choice of platform, architecture and Linux kernel version that are used to
evaluate the tools. I test each tool on several different CPU families and kernel versions: Table 5.3
shows the CPU families and the corresponding kernel version where the 4 tools have been tested.
I run the information gathering tools on each system and collect their final report. The approach of

83

this set of tools consists of simply parsing information gathered in the system, thus the execution
time of both MDSTOOL-CLI and SPECTRE-MELTDOWN-CHECKER is roughly constant. Concerning
empirical tools, I execute each test available in SPECULATOR and TRANSIENTFAIL on the machines
listed in Table 5.3. I set a 20 seconds timeout for all TRANSIENTFAIL empirical test runs with the
exception of the Spectre-BTB one where the threshold was set to 250 seconds because its runs are
significantly slower. Most of the tests are meant to run indefinitely while others until a secret is
revealed. The timeout is necessary to avoid infinite iterations. Spectre-BTB is a rather noisy attack
and the test is run in batches with an incremental number of iterations (e.g., 100k, 200k, 300k
etc.) until either the attack is successful or the time expired. I adjusted its timeout to allow this
incremental search of the right number of iterations. For SPECULATOR instead, I execute all tests
with 10k runs per instance. While in the case of TRANSIENTFAIL tests can be run as a standard
user, SPECULATOR requires root access on each machine to access the PMC interface.

I run all tools on systems hosted by 17 different infrastructure-as-a-service (IaaS) cloud
providers: I collect samples for all three main IaaS offerings, namely:

+ multi-tenant solutions: each tenant gets access to a virtual machine deployed on a set of
physical resources shared with other customers;

« single-tenant solutions: the tenant gets access to a machine with a hypervisor whose physical
resources are not shared with other customers;

« bare metal solutions: the machine is delivered without any virtualization solution and is
fully devoted to a single customer.

Testing on real cloud systems as opposed to self hosted and managed hardware provides useful
additional insight on the use of these tools in real-world scenarios: the choice of virtualization
platform and its effects on the availability of the PMC infrastructure, the impact of workload from
other tenants on the cache side channels, and default configurations for the systems are just a few.
More will be discussed in Section 5.7.1.

Overall I perform tests on 28 different machines as many cloud providers support more than
one of the above mentioned solutions. To keep my analysis as general as possible, I collect the
results from clouds of different sizes and market share: according to Gartner [100], the clouds I
test, cover together more than the 75% of the IaaS market share in 2018.

5.7 Testing Tools Analysis

In this section, I report results related to the comparison between the methodologies underpinning
the tools, underlining pros and cons of each. I also present the results of my analysis on the
17 tested providers. Finally, I report, based on the use cases described in Section 5.6.1, which
methodology might be better suited to determine the security of a system with respect to transient
execution attacks.

84

Parsing Error Use Case Imprecision Attack Vector only Cache Noise PMCreq. Root req.

MDSTOOL-CLI v v

SPECTRE-MELTDOWN-CHECKER v v
TRANSIENTFAIL v v

SPECULATOR v v v

Table 5.4: Major pitfalls and limitations observed for each tool. I indicate with v that the pitfall is
present, whereas I leave blank otherwise.

85

"9s® 95N dY12ads 93 Iapun J[qISLJ J0U ST JT I0 pauLIofIad aq JoUULd Yor)Je 3] SIYM JUe[q 3JI]
ST [[99 Y3} A[[eulj {[003 3]} WIOIJ PALIDJUI 9 UBD UOTJRULIOJUI OU ISIIS 2I9YM ¥ ‘pattodar A[J0a1p JOU ST JT Jnq PAIIdJUI 9q UBD UOTJRULIOJUT
3} JT <= PIIIPISUOD ISBI SN [} UTYIIM YOB]JE UTe]IdD B JNOQe UOTJeuLIojul s310da1 [003 a1} JT A :se pajtodal are synsay "d19YJuAs se
9s®D 9sn 9y} SULLIDJAI Aq ST} S103[J2I 3[qe} 3], 10394 YIB.] JO 9JUIISIXD [} UO JoYJel JNq SISeD 3sn dY1oads uo sndoj jou op s[00}
reourrdury *1°9°G UOI09G UT PIGLIOSIP SISBI Isn Y] 03 309dsaI YIIm syorlIR Y3 JO [oea 10 s9dA] JNsal 9y} JO UOTIRIYISSB[D) :G°G IR,

OTIYJUAS YOLVINOIdS
OTIYJUAS TIVALNAISNVY.L
XOS-H
H-D
D-O
AN
n-n
d-S
XDS-H
H-D
9-O
AN
n-n

X X X = d-S

dO ¥9d Md d Md SN | TLS dSd dIlLd LHd | @SeD 9N SJOOL
UMOPIOIN axpdadg

X ,r X
S L/

S X/
S L/

X >X XN |X

ITO-TOOLSAN

x
x
x
x

dIXMOHHI-NMOALTIN-d4.1L04ddS

f1

SS XN

X X £

S
X X I X X X[XXXXXXNN

X XN XX XXX %xXXNN
X XN XX XXX %xXXNN

86

1 || CVE-2017-5753 aka 'Spectre Variant 1, bounds check bypass'
* Mitigated according to the /sys interface:

3 YES (Mitigation: usercopy/swapgs barriers and __user pointer sanitization)
Kernel has array_index_mask_nospec:

5 YES (1 occurrence(s) found of x86 64 bits array_index_mask_nospec())

6 Kernel has the Red Hat/Ubuntu patch:

NO
s | * Kernel has mask_nospec64 (arm64):
9 NO
10 | > STATUS : NOT VULNERABLE (Mitigation: usercopy/swapgs barriers and __user pointer
sanitization)

Listing 5.2: SPECTRE-MELTDOWN-CHECKER sample output for Spectre PHT

5.7.1 Tools comparison

Table 5.4 presents a comparison between the tools I employed in my study. I enumerate here
advantages and disadvantages of each, providing examples from my analysis as support.

Pitfalls

Parsing errors. Information gathering tools may wrongly parse system information, thereby
providing wrong data to the user. For example, the MDSTOOL-CLI tool uses sysfs file system
provided by the Linux kernel to detect which mitigations are used against Spectre-PHT. The
content of this file has changed over different kernel versions, and MDsTOOL-CLI only recognizes
output with an outdated format, which leads it to conclude that a system with mitigations for
Spectre-PHT is vulnerable, in contradiction with the kernel-provided output. In contrast, SPECTRE-
MELTDOWN-CHECKER parses the output correctly for all tested kernel versions.

A similar parsing problem arises on older kernels when the /sys interface is not present. While
SPECTRE-MELTDOWN-CHECKER reports that the interface is missing, MpDsTOOL-CLI does not and
reports that CPUs are safe against Spectre-PHT, Spectre-BTB, Meltdown-US and Meltdown-P. This
issue may mislead the tool user into considering a system safe. I discovered the flawed MDsTOOL-CLI
reports while running my experiments on one of the cloud providers listed in Table 5.7.

Inaccuracies from implicit assumptions. A second, very common issue for information gathering
tools is related to the assumptions that are implicitly made over the considered use case: the tools
report results in very generic terms, whereas in reality they only analyze a specific use case. For
example, both SPECTRE-MELTDOWN-CHECKER and MDSTOOL-CLI report results about Spectre-BTB,
when in reality they only consider the effects of the Spectre-BTB attack vector on a user-to-kernel
use case. Similar arguments can be made for most transient execution attacks, wherein the same
attack vector applies to multiple use cases: the tacit assumptions and lack of precision can be
misleading. A related and more subtle issue concerns the confusion between the attack vector
and mitigations against specific attacks leveraging it. As an example, the Linux kernel includes
software mitigations to prevent a subset of Spectre-PHT attacks; SPECTRE-MELTDOWN-CHECKER
checks whether they are enabled and - based on that — reports whether the system is vulnerable
to Spectre-PHT. This report, shown in Listing 5.2, is however misleading because the mitigations

87

it evaluates do not necessarily protect from all Spectre-PHT attacks. First, Spectre-PHT attacks
are not limited to attacks targeting the kernel: any user-space program could be the target of
such an attack, as long as the target program contains a vulnerable code pattern and has not
been compiled with mitigations such as SLH [16]. Second, Spectre-PHT attacks against the Linux
kernel may still be feasible in isolated cases, as the mitigations are based on false-negative prone
static analysis and manual code analysis.

Not considering same-address space training. I have identified that Spectre-BTB attacks are
implicitly assumed by empirical tools to be in the cross-address space (cAS or cHT) variant. This is
problematic and may lead to a false sense of security: Spectre-BTB attacks may also be performed
in the same address-space (sAS) setting. Mitigations such as Intel’s IBRS, STIBP, and IBPB only
apply to the cross address space setting.

Attack vector only. Empirical tools draw conclusions based on synthetic attack scenarios. Thus,
they are only able to report results on the presence or absence of the specific transient attack
vector on which an end-to-end attack may be built. However, the presence of the attack vector
does not necessarily mean that an attack could be mounted in a particular use case, i.e., that the
system is vulnerable. For example, in the context of Spectre-BTB in the cHT setting, an empirical
tool can verify with a synthetic attack if the branch predictor is shared or not between the logic
cores of a system. Although the attack is synthetic, a negative result means that the attack vector
is not present, and that no attack of this kind can be performed. However, a positive result does
not mean a system is vulnerable: it only means that further requirements need to be fulfilled for a
valid end-to-end attack.

Cache noise. TRANSIENTFAIL faces problems when the system under test has competing cache
activity. This can give the user wrong or inaccurate results. During my cloud analysis, I experienced
such a problem on one provider where none of the TRANSIENTFAIL proof-of-concept attacks ran
correctly.

PMC & root requirement. A problem specific to SPECULATOR is the availability of PMCs. In
particular, during my analysis of cloud providers, in all but one cloud provider PMCs were not
available, due to the lack of the performance counter interface in the virtualized environment.
Also, SPECULATOR requires root privileges to use the PMCs infrastructure, which limits the use of
the tool to the administrators of the system.

Tool Commit hash
SPECTRE-MELTDOWN-CHECKER 91d0699
MDSTOOL-CLI 11b3240
TRANSIENTFAIL 7b0c9b2
SPECULATOR 4973a19

Table 5.6: Tools version used in the experiments

Tools vs use cases

Table 5.5 describes the effectiveness of each tool in evaluating transient execution attacks in each
of the applicable use cases.

SPECTRE-MELTDOWN-CHECKER reports information for the U-K use case for almost all attack
families. It is also the only tool the user can run to determine if Meltdown-P is patched in three

88

out of the six use cases, and the only tool that checks the CPU microcode to determine whether
the machine is patched against Meltdown-GP. MDsTOOL-CLI limits its output to the information
exposed by the kernel through sysfs; this mainly includes information about the state of the
mitigations, with few details about the use cases under analysis. Nevertheless, a user with good
knowledge of the mitigations listed in the final report of this tool can infer if the machine is
vulnerable in the U-K use case.

Empirical tools verify instead the existence of the attack vectors at the base of Spectre and
Meltdown variants. Both TRANSIENTFAIL and SPECULATOR execute test applications in user space
in order to verify the feasibility of an attack. However, the attacks are usually run in the same
address space of the victim, or from an attacker to a victim process not hardened against the
attack. Therefore, the empirical tools reports are not linked with the use cases considered for the
other tools; results are thus labeled as synthetic in Table 5.5.

5.7.2 Analysis

In this section, I present results collected by running all tools on systems hosted by 17 of the most
prominent cloud providers

Cloud Multi-tenant Single-tenant B. Metal
AWS v v
Alibaba
Azure

IBM Cloud
GCP

Digital Ocean
OVH
Hetzner
Oracle
Packet
Scaleway
Vultr
Bigstep
Cloudsigma
Tencent
RamNode
Zenlayer v

NSNS
\

NN N N N N N N N SN
ANANENENENENEN

Table 5.7: List of the 17 cloud provider tested and their available configurations

Information gathering tools

Results from SPECTRE-MELTDOWN-CHECKER and MDSTOOL-CLI show that 16 out of the 17 tested
cloud providers make use of the proper mitigations to harden the kernel against transient execution
attacks: only one provider uses a kernel version (4.4.0) that does not include mitigations against
Spectre and Meltdown attacks.

89

Regarding Spectre, 16 cloud providers run a kernel properly recompiled with Ifence instructions
and retpoline. Additionally, all enable mitigations such as IBPB, STIBP and SSBD. The default setup
of these mitigations is conditionally enabled which means that the mitigations are not enforced to
user space applications unless specifically requested, however the patched kernel in these settings
uses them when needed. Hence, the kernel cannot be attacked in any of the depicted scenarios
(sAS, cAS and cHT).

Regarding Meltdown, all the tested Intel machines, excepting those of one provider, use KPTI
and PTE inversion to block respectively Meltdown-US and Meltdown-P. However, the Meltdown-
US test from the TRANSIENTFAIL suite showed that KPTI does not stop Meltdown-US over pages
mapped as kernel-pages at runtime. Moreover, SPECTRE-MELTDOWN-CHECKER reports that the
CPU microcode of such machines is patched to stop Meltdown-GP. As for AMD-based machines,
Meltdown attacks do not affect them.

Empirical tools

Here, I report the results obtained by running the empirical tools on the considered cloud providers.
Tests for Spectre-PHT and Spectre-BTB succeed in the cAS case on all machines. Not all cloud
providers are affected in the cHT case since on virtual machines, hyper-threading is not always
available, making this scenario unfeasible. Specifically, I find that 4 clouds disable hyper-threading
in their multi-tenant solutions. Results for Spectre-RSB are negative, indicating that this attack
vector is prevented owing to the fact that RSB filling is enabled: at every context switch, possibly
poisonous RSB entries are flushed. The cHT scenario is unfeasible because the RSB is only shared
between processes running interleaved on the same logical core. Spectre-STL succeeds on all
machines since SSBD is only conditionally enabled, being inactive in practice: SSBD must be
fully enabled to prevent the attack in both user-space and kernel-space. Tests for Meltdown-RW
succeed on all Intel-based nodes except for those based on the new Cascade Lake microarchitecture.
For what concerns Meltdown-BR, the tests are successful on Intel CPUs supporting the mpx
instructions, while they report negative results on Ivy Bridge and Broadwell families. None of the
Meltdown variants show positive results on AMD.

I conclude that the empirical tools generally report most known attack vectors as present and
exploitable. Instead, the information gathering tools report the security stance of the system in the
U-K use case, which generally results in the system being classified as not vulnerable due to the
widely enabled kernel mitigations. The results discrepancy is justified by the following:

« the default configuration of all tested systems only conditionally enable user-space (U-U)
mitigations;

« the code implementing the synthetic attack scenarios in SPECULATOR and TRANSIENTFAIL
restricts generalization to other target applications on the system. By design, these tools are
unaware of the mitigations enabled outside of the synthetic environment.

5.8 Recommendations

During my analysis, I find that all available tools have shortcomings about their ability to determine
whether a system is vulnerable. Based on the experience gained during my work, I propose 5 main

90

recommendations directed towards systems administrators using such tools, as well as developers
of these tools.

GhostBuster

Spectre Meltdown
Checker

Speculator

Figure 5.5: GHOSTBUSTER’s overview. GHOSTBUSTER leverages SPECTRE-MELTDOWN-CHECKER and
my modified version of SPECULATOR to assess the system security using both known methodologies,
gathering and empirical. Then, it aggregates the results in a final report factoring in also the
various use cases I identified to give a more accurate picture to the user. With solid circles I
describe the major components of GHOSTBUSTER while with dotted circles I highlight operations
performed.

5.8.1 Limit cache noise

When working with empirical tools such as TRANSIENTFAIL, it is very important to pay particular
attention to workloads running on the same physical machine. Heavy cache activity, for instance
from the last-level-cache (LLC) that is often shared across cores might cause the test to report
that an attack is not feasible while actually the failure is caused by temporary cache activity. If
the user/administrator has the ability to control the load on the system, I recommend to pause
any workload during the test’s execution. Additionally, I recommend to run the tests several
times with enough time between each run. Finally, when possible, I recommend using PMC-based
approaches whenever available, as they are less prone to noise.

| |========= | SPECTRE STL =========
2 * Attack success rate (synthetic test): 93.0%
3 * Attack wvector: Present

* Difficulty: High - No practical attack demonstrated

7 * S-P: SSB is not fully disabled. Check that the victim program is compiled with seccomp()/
prctl().

8 * U-U: SSB is not fully disabled. Check that the victim program is compiled with seccomp()/
prctl().

9 * U-K: SSB is not fully disabled. Your kernel is vulnerable.

10 * G-G: Check if SSB is fully disabled on the host machine.

11 * G-H: Check if the kernel on the host machine supports disabling SSB.

12 * H-SGX: SSB is not fully disabled.

Listing 5.3: GHOSTBUSTER sample output for Spectre STL

91

5.8.2 Define the right use case and understand your threat model

Most of the mitigations currently available (described in Section 2.4) incur a medium to high
overhead. In fact, it is very common for these mitigations to be disabled by default. Enabling
one or more of them when not necessary is generally not indicated. Therefore, it is important
for a system administrator or user to understand which of the attacks flagged by one of the tools
for a specific system falls under the use case(s) the administrator/user cares about. An example
of such a case would be enabling a system-wide mitigation like STIBP when the only use case
considered important is the User to Kernel (U-K) one. This is because, by default, STIBP already
prevents attacks such as Spectre-BTB under the U-K scenario and it would be a performance waste
to enforce it system-wide.

1 ||CVE-2018-3639 aka 'vVariant 4, speculative store bypass'

* Mitigated according to the /sys interface: YES

3 (Speculative Store Bypass disabled via prctl and seccomp)

1 | * Kernel supports disabling speculative store bypass (SSB):

5 YES (found in /proc/self/status)

6 | * SSB mitigation is enabled and active: YES

7 (per-thread through prctl)

8 |> STATUS : NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and

seccomp)

Listing 5.4: SPECTRE-MELTDOWN-CHECKER sample output for Spectre STL

5.8.3 Understanding information gathering tools results

Tools should report as clearly as possible the assumptions underlying the reported results and the
considered use cases. In the current state of these tools, I recommend to verify either through the
tool documentation (if any) or the source code of the tool (if available) which use cases is under
analysis. Our analysis suggests it is possible that the assumptions made by existing tools do not
match those of the user, leading to a false sense of security or a lack of action.

| | ========= SPECTRE BTB same address-space =========
2 Attack success rate (synthetic test): 95.00%
Attack vector: Present

4 Difficulty: High - No practical attacks demonstrated.

6 | * S-P: Check that the target process is compiled with lfence or retpoline.

7 | * U=-U: Check that the target process is compiled with lfence or retpoline.

8 | * U-K: This kernel is not vulnerable: Full retpoline + IBPB are mitigating the vulnerability.
9 | * G-G: Check that the target process is compiled with lfence or retpoline.

10 | * G-H: Check that host kernel is compiled with retpoline and supports RSB filling.

11 | * H-SGX: Check that the target process is compiled with lfence or retpoline.

Listing 5.5: GHOSTBUSTER sample output for Spectre BTB same address-space

92

5.8.4 Use a mixed approach

Based on my analysis, I make the observation that the two types of tools, information gathering
and empirical, report different types of information. While using only one or the other gives a
very limited snapshot of the system security, their combination allows to gather more robust
information about the system in general but also allows for a greater ability to infer information
and inform the user. For instance, if I consider the Spectre-BTB in the cross address-space case and
I successfully verify the presence of such attack vector using either SPECULATOR or TRANSIENTFAIL.
Now, I can combine this result with the output on SPECTRE-MELTDOWN-CHECKER and connect
which use cases this attack vector might affect. For example, assuming that SPECTRE-MELTDOWN-
CHECKER tells us that STIBP is at default settings (conditionally enabled), I can infer that the attack
vector I verified with the empirical tools affects the U-U and S-P use cases but it does not affect
U-K.

5.8.5 Static analysis

A clear limitation of information gathering tools considered in this work is that, for attacks such as
Spectre-PHT, their verification is at best a coarse approximation. This is because none of the tools
inspects the target application at code level to verify if proper mitigations are inserted (e.g., lfencing
sensible branches or branchless masking). While no comprehensive static analysis tool is available,
known techniques such as Ifence counting (which is implemented in SPECTRE-MELTDOWN-CHECKER
only for the current kernel image) can help determine whether such protections are in place. I
recommend future work to integrate this type of static analysis to be able to inform users better,
in particular with respect to U-U use cases targeting important user space programs and libraries,
such as OpenSSH or OpenSSL.

| | ========= SPECTRE BTB cross address-space =========
2 | * Attack success rate (synthetic test): 75.00% (spatial colocation), 56.00% (temporal colocation)
3 Attack vector: Present

. | * Difficulty: Low - Practical attacks demonstrated in user-to-kernel and user-to-user use cases.

6 S-P: This use case does not apply for this attack.

7 | * U-U: Check that the target process is compiled with lfence or retpoline.

8 IBPB is conditionally enabled: check that the target process invokes it with prctl/seccomp.

9 STIBP is conditionally enabled: check that the target process invokes it with prctl/seccomp.

10 | * U-K: This kernel is not vulnerable: Full retpoline + IBPB are mitigating the vulnerability.

11 | * G-G: Enable STIBP and IBRS system-wide on the guest machine. If STIBP and IBPB are conditionally enabled
, check that the target process invokes them with prctl/seccomp or is compiled with retpoline.

12 | * G=H: Check that IBRS is enabled on the host, or that it is compiled with retpoline and uses IBPB.

13 | * H-SGX: Not vulnerable: IBRS is enabled.

Listing 5.6: GHOSTBUSTER sample output for Spectre BTB cross address-space

93

5.9 GhostBuster

Given that none of the four available tools provide a complete and consumable answer as to
whether a system is vulnerable to the various classes of transient execution attacks, I prototype
a new tool, GHOSTBUSTER, shown in Figure 5.5, that takes into account the recommendations
presented in the previous section and provides a system administrator with accurate information
to decide whether their system is vulnerable.

The tool is built on the foundation of empirical and information gathering methodologies
combined, as a result of the insights collected during my analysis. GHOSTBUSTER is a meta-tool
combining a modified version of SPECULATOR and SPECTRE-MELTDOWN-CHECKER, which allows
us to use the best of each available approach. Another key difference from existing tools is that
GHOSTBUSTER provides information explicitly based on use cases presented in Section 5.6.1. The
use case information is integrated with SPECULATOR and SPECTRE-MELTDOWN-CHECKER outputs
during the Aggregation phase as depicted in Figure 5.5.

In GHOSTBUSTER, the first tool I leverage is an enhanced version of SPEcuLATOR. For GHOST-
BUSTER, I include two sets of empirical tests, the PMC based I used during my analysis in Sec-
tion 5.5.2 and a second set, a cache based series of tests similar to the ones used in TRANSIENTFAIL.
The two set of tests for empirical verification are necessary to make sure I can have a fallback
mechanism when one of the two is not available, once again making the best out of available
approaches to avoid the pitfalls I identified. As mentioned in Section 5.7.1, PMC-based tests
cannot be used in a virtualized environment because such interface is not exported to the guest.
Similarly, there are cases in which the system has too much LLC activity, making the tests using
the cache unreliable and therefore requiring the PMC-based tool. When the system setup allows
s0, GHOSTBUSTER runs both empirical test sets to have confirmation of the results and detects any
mismatch. If GHOSTBUSTER detects a huge amount of LLC activity, it prompt a warning to the
user to signal that possible problems can arise while running TRANSIENTFAIL.

GHOSTBUSTER uses the SPECTRE-MELTDOWN-CHECKER output in the analysis phase, for its
comprehensive report on supported mitigations on the target system, together with their activation
status. This enables GHOSTBUSTER to connect the synthetic results provided by the tests with the
actual use cases. Subsequent to information gathering and analysis, GHOSTBUSTER presents the
results based on each use case. It presents information about the difficulty level D of the attack,
which I provide based on whether real-world attacks using that attack vector exist and how easy
it is for the attacker to meet the requirements for the attack. Formally, I compute it as follows:

N
D =100 - |40 rw + <60 -y WjRj> (5.1)

=0
[0, 40) Low

= 1[40,70) Medium (5.2)
[70,100] High

where rw € {0, 1} indicates whether the considered attack has a real world instance, R; € {0, 1}
indicates if the identified attack requirement j is present for the attack, N is the total number of
possible requirements found for a certain type of attack, and W, represents the difficulty weight
for each of the requirements, that for the sake of simplicity I set W; = & for each requirement j.

94

When possible, GHOSTBUSTER reports the system status, vulnerable or not vulnerable. In cases
when such a conclusion cannot be drawn, as may be the case with Spectre-PHT or Spectre-BTB
where the attack and mitigations are program dependent, GHOSTBUSTER provides a checklist that
the user can follow to verify the security of such application. I prefer to provide a checklist for
some of the cases instead of trying an automatic approach because there are no error-free methods
to detect, for instance, if an application is instrumented with SLH against Spectre-PHT. False
positive results might induce a false sense of security which is against the principles GHOSTBUSTER
is designed with, so I suggest the user what exactly requires manual verification instead.

Listing 5.1 shows the output of SPECTRE-MELTDOWN-CHECKER and Listing 5.5 and Listing 5.6
show the output of GHOSTBUSTER in relation to the Spectre-BTB attack. These outputs are
taken from the same machine in the same settings. SPECTRE-MELTDOWN-CHECKER provides raw
information about the mitigations status (e.g., present/not present). For instance, it confirms the
availability of mitigations such as IBRS and IBPB, and marks them as active. Also, it shows that
the kernel is compiled with retpoline. Finally it informs the user that the system is not vulnerable
because both mitigations IBRS and IBPB are present on the machine. I deem this output to be
misleading because the same machine tested under SPECULATOR is reported vulnerable to the
Spectre-BTB attack vector despite the picture depicted by SPECTRE-MELTDOWN-CHECKER output.
In practice, this means existing known attacks such as SMoTherSpectre [34] leaking bytes from
OpenSSL are feasible on this machine.

In contrast, GHOSTBUSTER provides more precise information. First, it provides the attack
success rate that empirical tests have obtained and it confirms the presence of the attack vector.
This information is retrieved thanks to my enhanced version of SPEcULATOR fork.

Second, based on the output of SPECTRE-MELTDOWN-CHECKER I are able to provide a more
detailed view regarding each one of the use cases. It is possible to notice that GHOSTBUSTER con-
siders the system protected against Spectre-BTB under the U-K use case. This confirms the output
of SPECTRE-MELTDOWN-CHECKER from Listing 5.1 that strictly focuses on the kernel protection
from transient execution attacks. Instead, for cases such as U-U, GHOSTBUSTER recognizes that
there are settings (e.g., same address space) in which no information regarding mitigations is
available and therefore no final decision can be taken based on available information. In such
cases GHOSTBUSTER provides suggestions such as to verify that the target application is compiled
with Ifence/retpoline, thereby not misleading the user into a false sense of security. Third, GHOST-
BUSTER considers, when necessary, the various attack settings (cAS/cHT/sAS). For Spectre-BTB,
GHOSTBUSTER provides different outputs for same and cross address space and adjusts the recom-
mendation accordingly to the scenario. For instance, for the U-U use case in the cross address
space setting, it suggests to the user to verify if the target application requests to enable STIBP
and IBPB to the kernel through either seccomp or prctl interface. In fact, it even distinguishes
between the need for STIBP (mitigating temporal colocation, cHT) and for IBPB (mitigation
spatial colocation, cAS) depending on whether none, either, or both of the two empirical tests are
successful. In the output shown here, both tests pass and both attack vectors are present, therefore
the recommendation is to enable both STIBP and IBPB.

Another example for comparison between GHOSTBUSTER and SPECTRE-MELTDOWN-CHECKER
is provided by Listing 5.4 and Listing 5.3 for the Spectre-STL attack. Here, SPECTRE-MELTDOWN-
CHECKER detects that the system supports Speculative Store Bypass (SSB) and simply declares
the system not vulnerable based on this information. In reality, the system should be considered
vulnerable for most of the use cases because the SSB mitigation is enabled only conditionally,

95

which is reflected in the GHOSTBUSTER output. Therefore, in use cases such as U-U and S-P, the
target application must be checked and forced to use either seccomp or prctl which would enforce
the mitigation for the current process. Nevertheless, GHOSTBUSTER also makes sure to let the
administrator know that this is a minor threat, given that no known attacks exist to this date.

This type of output comparison is valid for all the supported attacks, which I do not report for
sake of space. As shown, GHOSTBUSTER enhances current tools output to include use cases and
more targeted information, thus standing out as a more accurate and usable tool. Although my
current GHOSTBUSTER implementation is meant for x86/x86_64 Linux machines, the principles
incorporated and its design remain valid for other architectures (e.g ARM) and other Operating
Systems (e.g., Windows).

To conclude, GHOSTBUSTER provides a more detailed and accurate view of a system’s vulnera-
bility to transient execution attacks by simply combining the best features of existing approaches
and presenting them in an understandable way. While for certain use cases the assessment is
binary, vulnerable or not vulnerable, for others, GHOSTBUSTER guides the user on testing whether
the target application meets the correct safety requirements against an attack under the considered
use case.

96

Chapter 6

Future Work

Speculative execution attacks are a very new class of vulnerabilities and most of their limits and
capabilities remain to be discovered. Most of the work so far has been done on the x86 architecture.
However, speculative execution attacks affect any architecture that supports speculative execution.
Extending the focus to less mainstream architecture could potentially benefit the understanding
of the effects of speculative execution attacks. I propose to port SPECULATOR to other architectures
such as ARM and Power. In this way, I can verify if similar performance counters that can serve as
speculative execution markers exists and can be used similarly as I did under x86. Also, comparing
how speculative execution is implemented in various architectures could underline the most
successful design decisions that can serve as base to create future designs.

A direction for future research is the automation of some of the several stages speculative
execution attacks comprehend. These attacks are highly dependent from many factors to be
successful (e.g., code alignment, correct cache priming). Manually checking for those elements is
a very tedious and error prone task. In general, having automated analysis that is able to keep
those parameters into account would greatly benefit the ability of exploiting these vulnerabilities
in real world settings.

Cache side channels have been extensively studied in the past and a lot of literature is available
in this area. However, speculative execution attacks use of cache side channels differs from previous
known attacks. In a normal cache side channel attack, there are generally less requirements during
the cache priming phase. This allows for a broader and less precise cache eviction that allow the
attacker to obtain high quality signal. This is generally not possible in speculative execution attacks
because there are stricter requirements on what should be cached and what should be evicted.
While in my work we made progress in achieving a more precise eviction, further improvements
in developing even finer grain techniques are required to augment the exploitability of these
vulnerabilities.

97

98

Chapter 7

Papers

7.1 Related Publications

Parts of this thesis have been published in peer-reviewed conferences. Hereafter the list:

+ Andrea Mambretti, Alexandra Sandulescu, Matthias Neugschwandtner, Alessandro Sorniotti,
and Anil Kurmus. “Two methods for exploiting speculative control flow hijacks”. In Proceed-
ings of the 13th USENIX Workshop on Offensive Technologies (WOOT), Santa Clara, California,
USA, 2019. [33]

« Andrea Mambretti, Matthias Neugschwandtner, Alessandro Sorniotti, Engin Kirda, William
Robertson, and Anil Kurmus. “Speculator: A Tool to Analyze Speculative Execution Attacks
and Mitigations”. In Proceedings of the 35th Annual Computer Security Applications Conference
(ACSAC), San Juan, Puerto Rico, 2019. [82]

+ Andrea Mambretti, Pasquale Convertini, Alessandro Sorniotti, Alexandra Sandulescu, Engin
Kirda, and Anil Kurmus. “GhostBuster: Understanding and Overcoming the Pitfalls of
Transient Execution Vulnerability Checkers”. In Proceedings of the 28th IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER), Honolulu, Hawaii,
USA, 2021. [101]

+ Andrea Mambretti, Alexandra Sandulescu, Alessandro Sorniotti, William Robertson, Engin
Kirda, and Anil Kurmus. “Bypassing Memory Safety Mechanism through Speculative Control
Flow Hijacks”. In Proceedings of the 6th IEEE European Symposium on Security and Privacy
(IEEE Euro S&P), Vienna, Austria, 2021. [102]

7.2 Other work

Besides the work that is part of my dissertation, I worked and contribued on several other projects
that I briefly introduce in this section.

99

7.2.1 Lava: Large-scale automated vulnerability addition [1]

Automated bug finding has been an extensively studied area in the last decade. A large amount
of tools have been developed, often employing very different techniques from one another (e.g.,
fuzzing, symbolic execution, concolic execution etc.). However, comparing these techniques
remain a complicated task and it is hard to understand which and where one technique perform
better than another. First and foremost, the evaluation of each one of this work focuses on solely
discovering zero-day vulnerabilities—i.e., vulnerabilities that were not previously known. This
approach does not offer to compare the technique presented with others because the applications
used are often different. Moreover, it does not give information about the tool precision since the
total number of zero-day vulnerabilities is not known.

Towards solving this problem, I present Lava which is a tool aimed to create ground truth
corpora of buggy programs that can be used as benchmark to compare bug finding techniques. With
Lava, it is possible to analyze an application execution under a specific input and automatically
identifying parts of the input that are not involved in control flow decisions. Doing so guarantees
that the execution path from the program entry point to the injected vulnerability will not change
if those input bytes are modified. Lava adds a bug trigger based on these bytes for each of the
injected vulnerabilities. The vulnerabilities inserted by Lava can be of different types of memory
corruption and resides on the execution path based on the initial input. Lava reports all the
information related to each one of the injected vulnerability so that can be used to verify the
output of the bug finding tools.

7.2.2 HotFuzz: Discovering Algorithmic Denial-of-Service Vulnerabili-
ties Through Guided Micro-Fuzzing [2]

Most of contemporary fuzz testing techniques focus on memory corruption vulnerabilities. Mean-
while, algorithmic complexity (AC) vulnerabilities, which are a common attack vector for denial-
of-service attacks, remain an understudied threat. AC vulnerabilities encompass all those vulnera-
bilities that, given a legitimate input (i.e., an input that does not exceed the bandwith capability of
the application), are able to maximize the resource usage either in space or in time such to cause
denial-of-service.

In this work, I present HotFuzz a tool that apply micro-fuzzing, a novel technique that is
method-based, to discover AC vulnerabilities in Java applications. HotFuzz targets Java due to
its wide adoption in the wild for all sorts of applications. Through a modified version of the
JVM, called EyeVM, HotFuzz is able to monitor the resource usage in time or space of a single
method execution and is able to record outliers. HotFuzz marks as suspicious all those inputs that
are causing dramatic changes compared to the baseline. As baseline, HotFuzz uses the recorded
behavior of the test-suite each method within each library comes with.

7.2.3 Trellis: Privilege separation for multi-user applications made easy [3]

Across the security field, access control of resources is one of the most studied areas. Several
methodologies and schemes to perform access control exist in each domain where security is key
(e.g., physical building access, network access, software resources access etc.). In the software
realm, most of the access control in a shared environment is done at the operating system level.

100

For instance, under Linux, the filesystem access is regulated by three type of permission-i.e., user,
group, and other— and three type of accesses—i.e., read, write, and execute. Without the right
permissions, a certain user, in a shared system, cannot read, write, or execute a file. This allow
to protect resources from unauthorized accesses whenever needed. This type of access control
mechanism is very common and generally well tested from possible logic vulnerabilities that
would otherwise allow to bypass it.

However, the definition of users and/or access controls is not always defined at the operating
system level. That is generally the case for multi-user applications that are found in enterprise
environment (e.g., SAP CRM). In these applications, the burden for defining such access control is
left to the developers which often might lack of the security know-how. A mistake in the design
or in the implementation of such mechanism can jeopardize the whole system security. One
example is presented by Mulliner et al. [103] that discovered that some of these applications use
the Graphic User Interface (GUI) as medium to enforce access control. This GUI enforcement is
inadequate and can be easily bypass through the use of GUI inspectors.

In this work, I present Trellis that is a framework for expressing hierarchical access control
policies in applications and enforcing these policies during execution. Through partial annotation,
developers can define within the code base the privilege levels required by the application. Trellis
forwards this annotation at compile time and creates a privilege separated binary. At runtime,
these policies are extracted by the binary and enforced by the operating system kernel.

7.2.4 HONEYBUG: hypervisor-based approach for gathering attacker
insights

The modern cyber-attack landscape offers a large spectrum of possible attackers. This ranges
from beginners like “script kiddies”, to more powerful attackers such as criminal organization,
and state-sponsored attackers. Each attacker has different goals that motivate her activities. Often
times, it is impossible to attribute who is behind a certain attack and from which category such
attacker belongs to. Towards solving this problem a large number of work is done in terms of
honeypot systems that are spread within the network perimeter of a network. The goal of such
honeypot is to study the movement of the attacker within a fake system deceiving the attacker
from the real target and allowing time to react to the attack. However, such honeypot tend to
be quite finger-printable due to their confined environment and are only able to observe the
attacker only when it is already inside the system. Very little work has been done to observe the
attacker during the exploitation phase which is where most of the information about the attacker
capabilities can be gathered. Most of the related work incur in high overhead that is one of them
main fingerprints the attacker is able to detect.

In this work, I present Honeybug, a novel lightweight honeypot design with main focus to
observe exploitation of vulnerabilities while they are happening. To do so, I make us of Lava [1]
to build applications with several known bugs. I modified Lava such that each bug location is
instrumented during compilation with a nop-equivalent sequence of bytes that will be overwritten
at runtime to link the bug to a Honeybug custom hypervisor. The hypervisor is in charge of
monitoring the bug at runtime. When the application is loaded, the memory page where the bug
resides is cloned and one of the copies is overwritten with a hook to the hypervisor at the location
of the nop-equivalent sequence. I use the split-EPT [104] method to hide my instrumentation to the

101

attacker. Basically, upon reads on the location where there is the instrumentation, the hypervisor
shows the nop-equivalent sequence of instructions. While upon execution, it executes the sequence
of instructions that call into the hypervisor notifying that the bug is under exploitation. The use
of an hypevisor instead of cache split techniques or emulators is that the hypervisor is called only
upon specific circumstances leaving a very tiny footprint. A mechanism such Honeybug allows
for several possibilities when the exploitation detection is detected, for instance, the application
can be restart, or the bug can be shown but not really executed and so on. In this project, I aim to
just collect attacker interaction to be able to determine the attackers ability and possibly being
able to place each attacker to the right category based on the skills shown.

While the bulk of the prototype has been done, this project is missing the final evaluation
before being submitted for publication.

102

Chapter 8

Conclusions

In this dissertation, I concentrated on the subclass of transient execution attacks induced by
speculative execution, such as Spectre-PHT and Spectre-BTB. At the time of the writing, this area
of research is still relatively new, and new attack variants and new defenses are proposed on a
monthly basis.

First, I proposed a novel technique based on performance counters to deterministically be able
to reverse engineer the behavior of the micro-architecture. I integrated the use of this technique in
a tool, SPECULATOR, that is tailored to study small code snippets without introducing measurament
noise.

This technique and SPECULATOR were crucial for all the results gathered in this dissertation.
With them, I was able to gather insights on the micro-architecture (e.g., behavior during nested
speculation, or the effects of the clflush instruction in the speculation window etc.), and investigate
new side-channels gadgets beyond the known data cache (e.g., instruction cache, and branch target
buffer). Furthermore, using SPECULATOR I tested the resiliance of modern memory corruption
vulnerabilities such as CFI and SSP in the context of transient execution attacks and demonstrated
that they can be leaveraged to carry information leakage attacks.

Finally, I inspected the state of the art tools to discover if a system is vulnerable to transient
execution attacks. My analysis showed that each of the available tools has several pitfalls that
might mislead the user and give a false sense of security. As a result, I designed and proposed
an hibrid tool that I called GHOSTBUSTER that take advantage of the best features of each of
the existing tools and provide a more comprehensive view on the security stance of the system.
GHOSTBUSTER is based on SPECULATOR and SPECTRE-MELTDOWN-CHECKER.

103

104

Bibliography

(1]

(2]

[10]

[11]

[12]

[13]
[14]

[15]
[16]

B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich, and R. Whelan, “LAVA:
Large-scale Automated Vulnerability Addition,” in IEEE Symposium on Security and Privacy (Oakland), May
2016.

W. Blair, A. Mambretti, S. Arshad, M. Weissbacher, W. Robertson, E. Kirda, and M. Egele, “Hotfuzz:
Discovering algorithmic denial-of-service vulnerabilities through guided micro-fuzzing,” in 27th Annual
Network and Distributed System Security Symposium, NDSS 2020, San Diego, California, USA, February 23-26,
2020. The Internet Society, 2020.

A. Mambretti, K. Onarlioglu, C. Mulliner, W. Robertson, E. Kirda, F. Maggi, and S. Zanero, “Trellis: Privilege

»

Separation for Multi-User Applications Made Easy,” in International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), Sep. 2016.

G. P. Zero, “Reading privileged memory with a side-channel,”
https://googleprojectzero.blogspot.ch/2018/01/reading-privileged-memory-with-side.html, 2018.

P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in IEEE Symposium on Security
and Privacy, 2019.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg, “Meltdown: Reading kernel memory from user space,” in USENIX Security
Symposium, 2018.

J. Corbet, “Kaiser: hiding the kernel from user space,” https://lwn.net/Articles/738975/, 2017.

A. Seznec and P. Michaud, “A case for (partially) tagged geometric history length branch prediction,” J. Instr.
Level Parallelism, vol. 8, 2006.

C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss,
“A Systematic Evaluation of Transient Execution Attacks and Defenses,” in USENIX Security Symposium, 2019,
extended classification tree at https://transient.fail/.

P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in IEEE Symposium on Security and Privacy, 2018.

E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on aes, and countermeasures,” Journal of
Cryptology, vol. 23, no. 1, pp. 37-71, Jan 2010. [Online]. Available: https://doi.org/10.1007/s00145-009-9049-y

B. W. Lampson, “Lazy and speculative execution in computer systems,” in ACM SIGPLAN Conference on
Functional Programming, 2008.

P. Kocher, https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html, 2018.

P. Turner, “Retpoline: a software construct for preventing branch-target-injection,”
https://support.google.com/faqs/answer/7625886, 2018.

J. Corbet, “Meltdown/spectre mitigation for 4.15 and beyond,” https://lwn.net/Articles/744287/, 2018.

C. Carruth, “Speculative Load Hardening,” https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html,
2018.

105

https://googleprojectzero.blogspot.ch/2018/01/reading-privileged-memory-with-side.html
https://lwn.net/Articles/738975/
https://doi.org/10.1007/s00145-009-9049-y
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://support.google.com/faqs/answer/7625886
https://lwn.net/Articles/744287/
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html

[17]

(18]

[26]

[27]

[32]

(33]

P. Turner, “Retpoline: a software construct for preventing branch-target-injection,”
https://support.google.com/faqs/answer/7625886, 2018.

Intel, “Deep dive: Indirect branch restricted speculation,” https:
//software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-restricted-speculation,
2018.

——, “Deep dive: Indirect branch predictor barrier,”
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-predictor-barrier,
2018.

——, “Deep dive: Single thread indirect branch predictors,” https://software.intel.com/
security-software-guidance/insights/deep-dive-single-thread-indirect-branch-predictors, 2018.

D. W. Wall, “Limits of instruction-level parallelism,” in Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems, ser. ASPLOSIV. New York, NY,
USA: ACM, 1991, pp. 176-188. [Online]. Available: http://doi.acm.org/10.1145/106972.106991

K. B. Theobald, G. R. Gao, and L. J. Hendren, “Speculative execution and branch prediction on parallel
machines,” in International Conference on Supercomputing, 1993.

“Intel Software Developer Manual,” https://software.intel.com/en-us/articles/intel-sdm, 2018.

“Intel Architectures Optimization Reference Manual,” https://www.intel.com/content/dam/www/public/us/en/
documents/manuals/64-ia-32-architectures-optimization-manual.pdf, 2018.

“Preliminary Processor Programming Reference (PPR) for AMD Family 17h Models 00h-0Fh Processors,”
http://support.amd.com/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf, 2017.

A. Fog, “The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for assembly
programmers and compiler makers,” https://www.agner.org/optimize/microarchitecture.pdf, 2018.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH
Computer Architecture News, vol. 39, no. 2, Aug. 2011.

Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise, 13 cache side-channel attack,” in
Proceedings of the 23rd USENIX Conference on Security Symposium, ser. SEC’14. Berkeley, CA, USA: USENIX
Association, 2014, pp. 719-732. [Online]. Available: http://dl.acm.org/citation.cfm?id=2671225.2671271

D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A fast and stealthy cache attack,” in Detection
of Intrusions and Malware, and Vulnerability Assessment,]J. Caballero, U. Zurutuza, and R. J. Rodriguez, Eds.
Cham: Springer International Publishing, 2016, pp. 279-299.

C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen, “Prime+abort: A timer-free high-precision 13 cache
attack using intel TSX,” in 26th USENIX Security Symposium (USENIX Security 17). Vancouver, BC: USENIX
Association, 2017, pp. 51-67. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen

G. Maisuradze and C. Rossow, “Ret2spec: Speculative execution using return stack buffers,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security, ser. CCS *18. New York, NY,
USA: ACM, 2018, pp. 2109-2122. [Online]. Available: http://doi.acm.org/10.1145/3243734.3243761

E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh, “Spectre returns! speculation attacks using
the return stack buffer,” in USENIX Workshop On Offensive Technologies, 2018.

A. Mambretti, A. Sandulescu, M. Neugschwandtner, A. Sorniotti, and A. Kurmus, “Two methods for exploiting
speculative control flow hijacks,” in 13th USENIX Workshop on Offensive Technologies (WOOT 19). Santa Clara,
CA: USENIX Association, Aug. 2019. [Online]. Available:
https://www.usenix.org/conference/woot19/presentation/mambretti

106

https://support.google.com/faqs/answer/7625886
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-restricted-speculation
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-restricted-speculation
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-predictor-barrier
https://software.intel.com/security-software-guidance/insights/deep-dive-single-thread-indirect-branch-predictors
https://software.intel.com/security-software-guidance/insights/deep-dive-single-thread-indirect-branch-predictors
http://doi.acm.org/10.1145/106972.106991
https://software.intel.com/en-us/articles/intel-sdm
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://support.amd.com/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf
https://www.agner.org/optimize/microarchitecture.pdf
http://dl.acm.org/citation.cfm?id=2671225.2671271
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
http://doi.acm.org/10.1145/3243734.3243761
https://www.usenix.org/conference/woot19/presentation/mambretti

[34]

[35]

[36]

A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti, B. Falsafi, M. Payer, and A. Kurmus,
“Smotherspectre: Exploiting speculative execution through port contention,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, London, UK, November 11-15, 2019,
2019, pp. 785-800. [Online]. Available: https://doi.org/10.1145/3319535.3363194

V. Kiriansky and C. Waldspurger, “Speculative Buffer Overflows: Attacks and Defenses,”
https://people.csail. mit.edu/vlk/spectre11.pdf, 2018.

M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “Netspectre: Read arbitrary memory over
network,” in Computer Security — ESORICS 2019, K. Sako, S. Schneider, and P. Y. A. Ryan, Eds. Cham: Springer
International Publishing, 2019, pp. 279-299.

D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks: Automating attacks on inclusive last-level
caches,” in Proceedings of the 24th USENIX Conference on Security Symposium, ser. SEC’15. USA: USENIX
Association, 2015, p. 897-912.

C. Carruth, “Speculative load hardening,” https://llvm.org/docs/SpeculativeLoadHardening.html, 2018.
D. Williams, “Sanitize speculative array de-references,” https://lore kernel.org/patchwork/patch/874621/, 2018.
https://repo.or.cz/w/smatch.git, 2018.

“The Linux Kernel user’s and administrator’s guide,”
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html, 2019.

M. Bynens, “V8 Untrusted code mitigations,” https://github.com/v8/v8/wiki/Untrusted-code-mitigations, 2018.

L. Wagner, “Mitigations landing for new class of timing attack,”
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/, 2018.

“JIT mitigations for Spectre,”
https://github.com/Microsoft/ChakraCore/commit/08b82b8d33e9b36c0d6628b856£280234c87bal3, 2018.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting speculative execution,” Commun. ACM, vol. 63, no. 7, p.
93-101, Jun. 2020. [Online]. Available: https://doi.org/10.1145/3399742

J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher, “Speculative taint tracking (stt): A
comprehensive protection for speculatively accessed data,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52. New York, NY, USA: Association for
Computing Machinery, 2019, p. 954-968. [Online]. Available: https://doi.org/10.1145/3352460.3358274

“DOLMA: Securing speculation with the principle of transient non-observability,” in 30th USENIX Security
Symposium (USENIX Security 21). Vancouver, B.C.: USENIX Association, Aug. 2021. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity21/presentation/loughlin

R. Choudhary, J. Yu, C. Fletcher, and A. Morrison, “Speculative privacy tracking (spt): Leaking information
from speculative execution without compromising privacy,” in MICRO 2021 - 54th Annual IEEE/ACM
International Symposium on Microarchitecture, Proceedings, ser. Proceedings of the Annual International
Symposium on Microarchitecture, MICRO. IEEE Computer Society, Oct. 2021, pp. 607-622, publisher
Copyright: © 2021 Association for Computing Machinery.; null ; Conference date: 18-10-2021 Through
22-10-2021.

S. Ainsworth, GhostMinion: A Strictness-Ordered Cache System for Spectre Mitigation. New York, NY, USA:
Association for Computing Machinery, 2021, p. 592-606. [Online]. Available:
https://doi.org/10.1145/3466752.3480074

M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and J. Torrellas, “Invisispec: Making speculative
execution invisible in the cache hierarchy,” in Proceedings of the 51st Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-51. IEEE Press, 2018, p. 428-441. [Online]. Available:
https://doi.org/10.1109/MICRO.2018.00042

107

https://doi.org/10.1145/3319535.3363194
https://people.csail.mit.edu/vlk/spectre11.pdf
https://llvm.org/docs/SpeculativeLoadHardening.html
https://lore.kernel.org/patchwork/patch/874621/
https://repo.or.cz/w/smatch.git
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://github.com/v8/v8/wiki/Untrusted-code-mitigations
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://github.com/Microsoft/ChakraCore/commit/08b82b8d33e9b36c0d6628b856f280234c87ba13
https://doi.org/10.1145/3399742
https://doi.org/10.1145/3352460.3358274
https://www.usenix.org/conference/usenixsecurity21/presentation/loughlin
https://doi.org/10.1145/3466752.3480074
https://doi.org/10.1109/MICRO.2018.00042

[51]

G. Saileshwar and M. K. Qureshi, “Cleanupspec: An "undo" approach to safe speculation,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO ’52. New York, NY, USA:
Association for Computing Machinery, 2019, p. 73-86. [Online]. Available:
https://doi.org/10.1145/3352460.3358314

P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional speculation: An effective approach to safeguard
out-of-order execution against spectre attacks,” in 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2019, pp. 264-276.

C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Sjilander, “Efficient invisible speculative execution through
selective delay and value prediction,” in Proceedings of the 46th International Symposium on Computer
Architecture, ser. ISCA ’19. New York, NY, USA: Association for Computing Machinery, 2019, p. 723-735.
[Online]. Available: https://doi.org/10.1145/3307650.3322216

G. Saileshwar and M. Qureshi, “MIRAGE: Mitigating Conflict-Based cache attacks with a practical
Fully-Associative design,” in 30th USENIX Security Symposium (USENIX Security 21). USENIX Association,
Aug. 2021, pp. 1379-1396. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity21/presentation/saileshwar

V. Kiriansky, I. Lebedev, S.Amarasinghe, S. Devadas, and J. Emer, “Dawg: A defense against cache timing
attacks in speculative execution processors,” in Proceedings of the 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018, pp. 974-987.

A. C. de Melo, “The New Linux ‘perf” tools,” http://www.linux-kongress.org/2010/slides/1k2010-perf-acme.pdf,
2010.

T. Rohl, J. Eitzinger, G. Hager, and G. Wellein, “LIKWID Monitoring Stack: A Flexible Framework Enabling Job
Specific Performance monitoring for the masses,” in IEEE International Conference on Cluster Computing
(CLUSTER), 2017.

J. Levon, “Oprofile;” http://oprofile.sourceforge.net, 2002.

S. Eranian, “Perfmon?2: a flexible performance monitoring interface for linux,” in Proc. of the 2006 Ottawa Linux
Symposium, 2006, pp. 269-288.

M. Pettersson, “Perfctr,” http://user.it.uu.se/~mikpe/linux/perfctr/, 2006.

D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting performance data with papi-c,” in Tools for High
Performance Computing 2009. Springer, 2010, pp. 157-173.

D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of performance counter measurements,” in Performance
Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International Symposium on. I1EEE, 2009, pp. 23-32.

V. M. Weaver, “Linux perf_event features and overhead,” in The 2nd International Workshop on Performance
Analysis of Workload Optimized Systems, FastPath, vol. 13, 2013.

E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. B. Abu-Ghazaleh, “Spectre Returns! Speculation Attacks
using the Return Stack Buffer,” CoRR, 2018. [Online]. Available: http://arxiv.org/abs/1807.07940

G. Maisuradze and C. Rossow, “Ret2spec: Speculative execution using return stack buffers,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security, ser. CCS *18. New York, NY,
USA: ACM, 2018, pp. 2109-2122. [Online]. Available: http://doi.acm.org/10.1145/3243734.3243761

AMD, “Software optimization guide for amd family 17th processors,”
https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf, 2017.

A. Fog, “Test results for amd ryzen,” https://www.agner.org/optimize/blog/read.php?i=838&v=t, 2017.

“Performance Analysis Guide for Intel Core i7 Processor and Intel Xeon Processors,”
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf, 2009.

V. Kiriansky and C. Waldspurger, “Speculative Buffer Overflows: Attacks and Defenses,”
https://people.csail.mit.edu/vlk/spectre11.pdf, 2018.

108

https://doi.org/10.1145/3352460.3358314
https://doi.org/10.1145/3307650.3322216
https://www.usenix.org/conference/usenixsecurity21/presentation/saileshwar
http://www.linux-kongress.org/2010/slides/lk2010-perf-acme.pdf
http://oprofile.sourceforge.net
http://user.it.uu.se/~mikpe/linux/perfctr/
http://arxiv.org/abs/1807.07940
http://doi.acm.org/10.1145/3243734.3243761
https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf
https://www.agner.org/optimize/blog/read.php?i=838&v=t
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://people.csail.mit.edu/vlk/spectre11.pdf

[77]

S. Ramakesavan and J. Rodriguez, “Intel Memory Protection Extensions Enabling Guide,”
https://software.intel.com/en-us/articles/intel-memory-protection-extensions-enabling-guide, 2016.

O. Aciigmez, “Yet another microarchitectural attack: exploiting i-cache,” in Proceedings of the 2007 ACM
workshop on Computer security architecture, 2007.

O. Aciigmez, B. B. Brumley, and P. Grabher, “New results on instruction cache attacks,” in International
Workshop on Cryptographic Hardware and Embedded Systems, 2010.

D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over aslr: Attacking branch predictors to bypass
asly in The 49th Annual IEEE/ACM International Symposium on Microarchitecture. 1EEE Press, 2016, p. 40.

A. Sotirov, “Bypassing memory protections: The future of exploitation,” in USENIX Security, 2009.

L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal War in Memory,” in IEEE Symposium on Security and
Privacy, 2013.

V. van der Veen, N. dutt Sharma, L. Cavallaro, and H. Bos, “Memory errors: The past, the present, and the
future,” in Proceedings of the 15th International Conference on Research in Attacks, Intrusions, and Defenses, ser.
RAID’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 86-106. [Online]. Available:
http://dx.doi.org/lo.1007/978-3-642-33338-5_5

C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss, “A
systematic evaluation of transient execution attacks and defenses,” in 28th USENIX Security Symposium
(USENIX Security 19). Santa Clara, CA: USENIX Association, Aug. 2019, pp. 249-266. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/canella

R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and T. Verwaest, “Spectre is here to stay: An analysis of
side-channels and speculative execution,” 2019.

H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh, “On the effectiveness of address-space
randomization,” in Proceedings of the 11th ACM Conference on Computer and Communications Security, ser. CCS
’04. New York, NY, USA: Association for Computing Machinery, 2004, p. 298-307. [Online]. Available:
https://doi.org/10.1145/1030083.1030124

R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks against kernel space aslr,” in 2013 [EEE
Symposium on Security and Privacy. 1EEE, 2013, pp. 191-205.

C. Robertson and et al., “C++ developer guidance for speculative execution side channels,”
https://docs.microsoft.com/en-us/cpp/security/developer-guidance-speculative-execution, 2018.

A. Mambretti, M. Neugschwandtner, A. Sorniotti, E. Kirda, W. Robertson, and A. Kurmus, “Speculator: A tool
to analyze speculative execution attacks and mitigations,” in Proceedings of the 35th Annual Computer Security
Applications Conference, ser. ACSAC ’19. New York, NY, USA: Association for Computing Machinery, 2019, p.
747-761. [Online]. Available: https://doi.org/10.1145/3359789.3359837

M. et al., “Speculator,” https://github.com/ibm-research/speculator/wiki, 2019.
“pagemap: do not leak physical addresses to non-privileged userspace,” https://lwn.net/Articles/642074/.

C. Maurice, N. L. Scouarnec, C. Neumann, O. Heen, and A. Francillon, “Reverse engineering intel last-level
cache complex addressing using performance counters,” in Research in Attacks, Intrusions, and Defenses - 18th
International Symposium, RAID 2015, Kyoto, Japan, November 2-4, 2015, Proceedings, 2015, pp. 48—65. [Online].
Available: https://doi.org/10.1007/978-3-319-26362-5_3

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel attacks are practical,” in
Proceedings of the 2015 IEEE Symposium on Security and Privacy, ser. SP ’15. Washington, DC, USA: IEEE
Computer Society, 2015, pp. 605-622. [Online]. Available: https://doi.org/10.1109/SP.2015.43

R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented programming: Systems, languages, and
applications,” ACM Trans. Inf. Syst. Secur., vol. 15, no. 1, pp. 2:1-2:34, Mar. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2133375.2133377

109

https://software.intel.com/en-us/articles/intel-memory-protection-extensions-enabling-guide
http://dx.doi.org/10.1007/978-3-642-33338-5_5
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://doi.org/10.1145/1030083.1030124
https://docs.microsoft.com/en-us/cpp/security/developer-guidance-speculative-execution
https://doi.org/10.1145/3359789.3359837
https://github.com/ibm-research/speculator/wiki
https://lwn.net/Articles/642074/
https://doi.org/10.1007/978-3-319-26362-5_3
https://doi.org/10.1109/SP.2015.43
http://doi.acm.org/10.1145/2133375.2133377

[100]

[101]

[102]

[103]

“ROPgadget,” http://shell-storm.org/project/ROPgadget.
“CVE-2004-0597,” https://nvd.nist.gov/vuln/detail/ CVE-2004-0597, 2004.

C. Tice, G. Inc, T. Roeder, G. Inc, P. Collingbourne, G. Inc, S. Checkoway, Ulfar Erlingsson, G. Inc, L. Lozano,
G. Inc, and G. Pike, “Enforcing forward-edge control-flow integrity,” in in GCC & LLVM. In 23rd USENIX
Security Symposium (USENIX Security 14) (Aug. 2014), USENIX Association, 2014, pp. 941-955.

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song, “Code-pointer integrity,” in 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14). Broomfield, CO: USENIX Association,
Oct. 2014, pp. 147-163. [Online]. Available:
https://www.usenix.org/conference/osdil4/technical-sessions/presentation/kuznetsov

R. Cox, “Spectre,” 2020. [Online]. Available: https://github.com/golang/go/wiki/Spectre

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The spy in the sandbox: Practical cache
attacks in javascript and their implications,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’15. New York, NY, USA: Association for Computing Machinery, 2015,
p- 1406—1418. [Online]. Available: https://doi.org/10.1145/2810103.2813708

S. Lesimple, “spectre-meltdown-checker script,” 2018. [Online]. Available:
https://github.com/speed47/spectre-meltdown-checker

VUSec, “mdstool-cli tool,” 2019. [Online]. Available: https://github.com/vusec/ridl

S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose, “Sok: The challenges, pitfalls, and perils
of using hardware performance counters for security,” 09 2018.

Google, “Google safeside project,” 2019. [Online]. Available: https://github.com/google/safeside

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar, “Native
client: A sandbox for portable, untrusted x86 native code,” IEEE, pp. 79-93, 2009.

G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre: Stealing intel secrets from sgx enclaves
via speculative execution,” in 2019 IEEE European Symposium on Security and Privacy (EuroS P), 2019, pp.
142-157.

Gartner, “Gartner says worldwide iaas public cloud services market grew 31.3in 2018,” 2018. [Online].
Available: https://www.gartner.com/en/newsroom/press-releases/
2019-07-29-gartner-says-worldwide-iaas-public-cloud-services-market-grew-31point3-percent-in-2018

A. Mambretti, P. Convertini, A. Sorniotti, A. Sandulescu, E. Kirda, and A. Kurmus, “Ghostbuster:
understanding and overcoming the pitfalls of transient execution vulnerability checkers,” in 2021 IEEE
International Conference on Software Analysis, Evolution and Reengineering (SANER), 2021, pp. 307-317.

A. Mambretti, A. Sandulescu, A. Sorniotti, W. Robertson, E. Kirda, and A. Kurmus, “Bypassing memory safety
mechanisms through speculative control flow hijacks,” in 2021 IEEE European Symposium on Security and
Privacy (EuroS&P), 2021, pp. 633-649.

C. Mulliner, W. Robertson, and E. Kirda, “Hidden gems: Automated discovery of access control vulnerabilities
in graphical user interfaces,” in 2014 IEEE Symposium on Security and Privacy, 2014, pp. 149-162.

[104] J. Torrey, “More shadow walker: Tlb-splitting on modern x86,” Blackhat USA, 2014.

110

http://shell-storm.org/project/ROPgadget
https://nvd.nist.gov/vuln/detail/CVE-2004-0597
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://github.com/golang/go/wiki/Spectre
https://doi.org/10.1145/2810103.2813708
https://github.com/speed47/spectre-meltdown-checker
https://github.com/vusec/ridl
https://github.com/google/safeside
https://www.gartner.com/en/newsroom/press-releases/2019-07-29-gartner-says-worldwide-iaas-public-cloud-services-market-grew-31point3-percent-in-2018
https://www.gartner.com/en/newsroom/press-releases/2019-07-29-gartner-says-worldwide-iaas-public-cloud-services-market-grew-31point3-percent-in-2018

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Background
	Microarchitecture
	Pipeline
	Cache
	Branch Prediction
	Out-of-order Execution
	Speculative Execution
	Multiprocessing and multithreading

	Transient execution attacks
	Fault-based attacks
	Speculation-based attacks
	Speculative Execution Attacks Phases

	Privilege boundaries and attack impact
	Defenses
	Memory Fencing
	Branchless masking
	Retpoline
	KPTI
	Indirect Branch Restricted Speculation
	Indirect Branch Predictor Barrier
	Single thread indirect Branch Predictors
	RSB filling
	SSB mitigation
	PTE inversion
	VMC conditional

	Related Work
	Speculative Execution
	Cache Side Channels
	Speculative Execution Attacks
	Mitigations
	Safe Speculation Designs

	Debugging Speculative Execution
	Speculator
	Performance Monitor Capabilities
	Objectives
	Design and Implementation
	Triggering Speculative Execution
	Speculative Execution Markers

	Using Speculator: Dissecting the microarchitectural world
	Return Stack Buffer Size
	Nesting Speculative Execution
	Speculative execution across system calls
	Flushing the Cache
	Speculation window size
	Stopping Speculative Execution
	Executable Page Permission
	Memory Protection Extensions
	Issued vs. Executed ops

	Using Speculator: Analyzing Attacks and Mitigations
	SplitSpectre
	BTI
	Mitigations
	Out-of-order execution bandwidth

	SplitSpectre
	The SplitSpectre Gadget
	The Analysis

	New microarchitectural side-channels
	Icache Attack
	Icache Discussion
	Double BTI Attack
	Practical considerations

	Gadgets analysis
	Icache Attack
	Double BTI Attack

	Mitigations

	Impact of Spectre
	Speculative execution attacks on memory safety mechanisms
	SPEAR attacks
	Speculation window and eviction
	Speculative ROP

	Case studies
	Attacking stack canaries
	Attacking CFI
	Attacking memory safe languages
	SPEAR attack against Rust bounds checking

	Mitigations against SPEAR
	Mitigations for SSP
	Mitigations for the Go compiler
	Mitigations for GCC VTV

	Discussion on SPEAR
	Testing Tools
	Information gathering tools
	Empirical tools

	Methodology
	Use Cases
	Systems and Platforms

	Testing Tools Analysis
	Tools comparison
	Analysis

	Recommendations
	Limit cache noise
	Define the right use case and understand your threat model
	Understanding information gathering tools results
	Use a mixed approach
	Static analysis

	GhostBuster

	Future Work
	Papers
	Related Publications
	Other work
	Lava: Large-scale automated vulnerability addition Oakland2016lava
	HotFuzz: Discovering Algorithmic Denial-of-Service Vulnerabilities Through Guided Micro-Fuzzing ndss2020hotfuzz
	Trellis: Privilege separation for multi-user applications made easy raid2016trellis
	HONEYBUG: hypervisor-based approach for gathering attacker insights

	Conclusions
	Bibliography

