
Educational Game Design: An Empirical Study of the Effects of
Narrative

Chaima Jemmali
Northeastern University

jemmali.c@husky.neu.edu

Sara Bunian
Northeastern University
banian.s@husky.neu.edu

Andrea Mambretti
Northeastern University

mbr@ccs.neu.edu

Magy Seif El-Nasr
Northeastern University

m.seifel-nasr@
northeastern.edu

ABSTRACT
Integrating narrative elements into a game is a key element in de-
signing an immersive experience. Narrative has been hypothesized
to improve engagement, motivation, and learning within educational
environments. While empirical results have been produced to show
that narrative enhances engagement and motivation, its effects on
learning were shown to either be insignificant or negative. We, there-
fore, aim to address the question of how to integrate narrative in a
game to improve learning. We address this through the design of
May’s Journey, an educational game that teaches basic programming
concepts where a story is integrated. The game design seamlessly
integrates learning goals, core mechanic and narrative elements. In
this paper, we discuss the game design as well as a study we con-
ducted to compare two game versions, one with rich narrative and
the other with light narrative. Results demonstrate that participants
who interacted with the rich narrative version had fewer program-
ming errors and increased engagement within the game. We present
our contributions in the form of educational design principles for
narrative integration supported by our study and results.

CCS CONCEPTS
• Human-centered computing → Empirical studies in interac-
tion design;

KEYWORDS
Education, Game Design, Programming, Narrative

ACM Reference Format:
Chaima Jemmali, Sara Bunian, Andrea Mambretti, and Magy Seif El-Nasr.
2018. Educational Game Design: An Empirical Study of the Effects of
Narrative. In Foundations of Digital Games 2018 (FDG18), August 7–10,
2018, Malmö, Sweden. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3235765.3235783

1 INTRODUCTION
Effective games are generally viewed to be intrinsically motivating
to players [70], which can entice them to learn and acquire knowl-
edge [3]. Fostering the engaging power of games into educational
goals can provide powerful opportunities for deeper learning as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG’18, August 7–10, 2018, Malmö, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6571-0/18/08. . . $15.00
https://doi.org/10.1145/3235765.3235783

their interactive characteristics offer the ability of experiential learn-
ing [36], thus improving content relevance and increasing intrinsic
motivation [23, 55]. While the relationship between learning and en-
gagement in educational games is under ongoing investigation, most
research studies agree that engagement enhances and encourages
learning [66, 68].

Integrating narrative elements into a game is a key design element
for creating an immersive experience [3, 34]. The work on narrative
and games is exhaustive with several conferences associated with the
topic. With space limitation, we will only discuss relevant definitions
and work. Juul defines game narrative as discourse (the telling of
a story) containing the existents and events [31]. Jenkins discusses
narrative in terms of plot and story, respectively representing a series
of events happening and the viewer’s mental construction of it. He
also identifies two kinds of narratives in games: one relatively un-
structured and controlled by the player and the other pre-structured
and embedded within the game [30]. Lindley describes a story in a
game as a function of three constructs interacting in the play experi-
ence; the pre-designed narrative content, the story potential, and the
actual unfolding of the story created by the actions of the player [45].
As identified by Malone’s seminal work [49], fantasy in the use
of narrative is one of the key elements of games that attracts play-
ers through its motivational features such as compelling characters,
captivating scenarios, and fantastical settings [50]. Narrative has
also been identified to support intrinsic motivation, which has been
suggested to generate better learning outcomes [14].

The effect of narrative in educational games has been investigated
thoroughly in the literature [16, 18, 44, 50]. However, the success
of contextualizing learning with narrative has not been shown em-
pirically. In fact, the few empirical studies that compare different
educational game versions with a varying amount of narrative have
found that while narrative tend to improve engagement, it had either
no effects or negative effects on learning [1, 22, 52, 53, 56, 65].

The question that arises is why a correlation between narrative
and learning difficult to achieve? Our hypothesis is that the problem
lies in the game design as well as the study setup. In some cases,
the narrative elements added to the game are unrelated to the sub-
ject taught. In others, the story is not integrated with the gameplay.
Finally, adding narrative adds content to the game, which makes it
longer to play. That additional time should be taken into account
when designing the study comparing between the game versions.

Inspired by game engagement theories, we chose design princi-
ples that can create engaging educational narrative games, while
also have positive effects on players’ performance. We applied these
principles to the design of May’s Journey, a game where players
navigate an environmental maze and solve puzzles through program-
ming in an Object Oriented-like custom language. We hypothesize

https://doi.org/10.1145/3235765.3235783
https://doi.org/10.1145/3235765.3235783
https://doi.org/10.1145/3235765.3235783

FDG’18, August 7–10, 2018, Malmö, Sweden Chaima Jemmali, Sara Bunian, Andrea Mambretti, and Magy Seif El-Nasr

that the game design and the narrative features would inspire stu-
dents’ interest in learning how to program. Using game-log data
and questionnaires, we compare participants’ behavior and interest
toward programming in two versions of our game; Rich Narrative
(RN) vs Light Narrative (LN) that differ in the presence and absence
of predefined narrative; the in-game stories or histories revealed via
simulated book or dialog text. Our results demonstrate that partici-
pants engaged in the RN version had fewer programming errors and
increased engagement. Our contribution is two-fold:(1) presenting a
set of educational game design principles and their application in a
game that teaches programming, and (2) empirical evidence of the
positive effects of narrative on student engagement and performance.

2 RELATED WORK
Our research focuses on two major points: methodologies for teach-
ing programming and effects of narrative on educational games.

2.1 Teaching Programming
Teaching programming is difficult and several researchers have
tackled this problem from many different perspectives during the
past couple of decades [25, 59, 63]. However, there is still no
consensus on what is the most effective way to teach program-
ming [25, 69, 74, 75]. One popular method is the construction-
ist approach, including Scratch [61], Alice [13] or Logo Program-
ming [57], where students are invited to freely explore and construct
their programs. However, while increasing interest and engagement,
previous empirical studies have shown that students who used these
tools had either not discovered important programming concepts,
like booleans, variables and control flow, or held misconceptions
about their function [24, 39, 51].

Despite the lack of a unified approach to teaching programming,
one of the most common viewpoints is that teaching the paradigms
of the process is more important than the language choice [10, 46,
47, 80]. To eliminate the barrier of syntax [59], block-based program-
ming, such as Scratch [61], Blockly [21] and recently Reduct [5]
has become increasingly popular due to its use of intuitive features,
such as drag and drop. However, high school students have also
identified drawbacks to block-based programming compared to the
conventional text-based approach. Specifically, they perceived it as
less authentic and less powerful [76]. On the other hand, existing
popular languages such as java or C++ are too verbose and therefore
not suitable for educational purposes, especially for beginners [59].
Another approach is to use a custom language, e.g., [20, 43]. The
advantages of such an approach are that it reduces the complexity of
existing languages while keeping the authenticity of programming.
It also can be made easy to use by restricting the scope of function-
ality and emphasizing only a few concepts at a time [10, 27, 37].
Additionally, debugging can be introduced in a simpler way. This
is important because debugging is one of the most essential con-
cepts that has been shown to be difficult for beginners [35, 40, 58].
We, thus, chose to develop a custom programming language for our
game.

Programming and puzzles both require inquisitive thinking and ef-
ficient problem solving. In fact, computing and informatics commu-
nity has adopted programming as an application of problem-solving
skills [15, 40, 54, 59, 64]. Problem based learning (PBL) is not just

about solving the problems but rather about using them to increase
knowledge and understanding. This approach is successful only if
the problems and scenarios are of high quality [78] which makes de-
signing the problems and, in our case the puzzles, a critical process.
Puzzles can also be an efficient and effective method to teach code
concepts than tutorial based approaches [27, 43]. Results from [5]
demonstrate how a puzzle game can teach programming language
semantics in a structured environment. In our work, we discuss a
game-based approach due to its ability to provide structure while
also offering agency and freedom to play. We are using a structured
approach, rather than a constructionist approach, to deliver an envi-
ronment that teaches programming concepts through a game, where
game progression presents the structure for the learner to engage in.

2.2 Effects of narratives
Game-based learning holds a great promise for deep and innova-
tive learning opportunities. Researchers have identified how games
can be utilized to effectively enhance learning [2, 23, 49, 62, 72].
Games offer experiential learning opportunities [36] and engage
learners through intrinsic motivation [4]. Some educational games
have shown improvement in learning outcomes [7, 12, 77] as well
as student’s engagement in learning [28].

The relationship between learning and engagement in educational
games is under ongoing investigation. While cases exist in which
a correlation could not be established [26], most research studies
seem to agree that engagement enhances and encourages learning.
Findings presented in [66] provide evidence of a strong correlation
between learning and engagement in a game-based environment
that teaches scientific inquiry. Results from [68] provide supporting
evidence regarding the positive relationship between learning and
engagement in game-based learning.

Previous works suggests that incorporating engaging narrative
within a learning environment can aid in supporting engagement and
increasing student performance [67]. It is also assumed to support
intrinsic motivation [49] which in turn can generate better learning
outcomes [43].

It should, therefore, be expected that incorporating narrative el-
ements would improve learning and engagement in an educational
context. While there are many theoretical work discussing the ef-
fects of narrative in educational games [16, 18, 44, 50], there are
few empirical studies investigating the effect of narrative on engage-
ment and learning [11, 16]. These studies report engagement but no
learning gains by including the narrative. A study investigating the
use of narrative in an educational mystery game for microbiology,
compared a rich and a minimal narrative condition of the game to a
PowerPoint condition with the same content [56]. Results indicated
that the rich narrative condition produced the lowest learning gains
in comparison to both the minimal and the PowerPoint condition.
The latter produced the highest gains among students. However, the
authors noted that the limited amount of time allocated for the exper-
iment may have prevented the participants from fully exploring the
game’s educational content. Another study compared the effect of
art style and narrative complexity of a game designed to help players
mitigate three cognitive biases to a professionally designed video for
the same purpose [52, 53]. Overall, results indicated that there was

Educational Game Design: An Empirical Study of the Effects of Narrative FDG’18, August 7–10, 2018, Malmö, Sweden

no significant difference between the narrative complexity condi-
tions and the training outcome. These findings could be attributed to
the way in which the narrative was integrated; only at the beginning
and at the end and not during gameplay. Another study showed no
significant differences in learning scores between an educational
game with different types of narrative and a game with no narra-
tive [1]. In one case, narrative has been shown to encourage off-task
behavior within the game which had negative effects on students’
performance [65]. Finally, another recent study looking at the effects
of narrative in a math game, also found that the story version did
not improve students’ performance which was in agreement with
participants’ perception of the influence of the narrative on their
math performance [22]. In this case, the story was also added in the
beginning and was not related to the game mechanics or educational
goal. Further, in the domain of programming education, one study
compared student’s experience in learning to program using two
versions of a programming environment that differed in their sto-
rytelling support [33]. Results indicated that while the storytelling
version was more motivating to students, both versions had equal
effect on the learning outcome.

In this paper, we aim to further investigate this question adopting
a structured approach, where we seamlessly integrate story, game
mechanics and learning goals. We also address the issue of timing
in our study by not fixing an upper time limit for our participants to
play the game.

3 DESIGN
May’s Journey is a 3D puzzle game in which players solve an en-
vironmental maze by using the game’s pseudo code to manipulate
the game objects. The game is designed to teach the basics of pro-
gramming, focusing on logic and object oriented abstractions, while
asking learners to type simple instructions in the game’s program-
ming language. In a fictional programmed game world that lost its
balance, the player is asked to help, May, the protagonist who is
attempting to solve the mystery behind the broken world in order to
fix it.

3.1 Design Principles
The design of the game is inspired by theories related to what makes
games fun as well as what makes educational games effective [38,
48]. The design principles below are what we used in an attempt
to achieve a cohesive game where narrative, learning and game
mechanics are blended together.

• P1: The core mechanic of the game conveys the main learn-
ing goals. There can be other game mechanics and other
secondary goals but the focus is on having the gameplay
serve the knowledge to be acquired.

• P2: The game is modular; if one level is broken, too com-
plex, etc., changing that level, removing it or breaking it into
smaller levels can be done without disrupting the flow of the
game or changing any other level.

• P3: The game is structured to encourage “controlled explo-
ration”. Levels are grouped into areas in which players can
explore in any order, giving them freedom of exploration and
a sense of agency. However, to unlock a new area, they need

to reach a blocking point that is overcome by solving the
previous area’s puzzles.

• P4: The story is related to the learning matter but does not
necessarily communicate its learning objectives. In fact, the
story conveys a reason to learn and presents a rational expla-
nation for gameplay and its difference from other games.

• P5: Every element in the environment supports the narrative.
Props, characters, lights etc, are carefully placed to augment
and enrich the narrative.

• P6: Hints and Help assist the player’s reasoning about the
problem but do not give away solutions.

According to Koster [38], fun arises from learning and mastering.
In his theory, good games consist of preparation, a core mechanic,
a range of challenges requiring a range of abilities and skill, which
inspired P1. In addition, he thinks that the core of most successful
games is made of building blocks, deriving P2 where we recommend
to build the game in a modular way or in "blocks" which also makes
difficulty adjustment easier. In fact, to increase fun, games have
to push the boundary of skill because if the game is too trivial
or too difficult it becomes boring [38]. P3 was inspired from the
updated quest design of CodeSpells [19], where levels were broken
up into areas teaching specific goals, because using an unstructured
approach led students to miss important learning points. According
to Malone [48], the essential characteristics of good computer games
are challenge, fantasy, and curiosity. Every game should have a
goal whose attainment should seem uncertain to the players. Again,
he thinks that if a player is certain to win or to lose, they will
become bored. He believes that the skill being taught should be
used as a mean to achieving the goal but not the goal itself and
highlights the importance of intrinsic fantasy which means that
the narrative is related to the learning objective. Both these points
led to the formulation of P4. On the importance of curiosity, he
defines cognitive curiosity as the motivation to learn independent
from the goal created by the game or the fantasy around it which also
supports P1. As for environmental elements, they stimulate sensory
curiosity P5 [48] and amplify fun [38]. Finally, Malone mentions the
importance of self-esteem and how performance feedback should
be presented in a way that minimizes self-esteem damage leading
to P6. The remainder of this section explains how these principles
were applied to our design.

3.2 Narrative
The narrative of the game is meant to not only support engagement,
but also provide a logical reasoning behind the fact that players need
to program to solve their puzzles P4. In fact, students lose interest
in programming not only because of difficulty but also because of
the lack of compelling contexts in which to learn programming [32].
Curiosity in game design has been identified as an element that
promotes engagement [17, 49, 60]. To achieve that, we used fore-
shadowing techniques, [79] revealing parts of the story built on the
Hero’s Journey trope. The “hero” May, asks the player for help which
represents our “call for adventure”. Strange events are happening in
her world and she got separated from her friend Juno. Her world is
made of code, and now, that code is failing, breaking with it paths
that the player will need to program and fix. From the beginning, the
narrative is situating players’ goals and motivations. The “mentor”

FDG’18, August 7–10, 2018, Malmö, Sweden Chaima Jemmali, Sara Bunian, Andrea Mambretti, and Magy Seif El-Nasr

is an Oracle named Myr, she is the one that helped May contact the
player. She provides help and explanations throughout the game. The
appearing “antagonist” are the Micros who are strong entities also
capable of coding. The player will learn only parts of the story at a
time, as it unfolds through gameplay and exploration. For instance,
In a secret room they find a statue of a Micro revealing a worshiped
hero amongst the “enemy”. In another level, they learn about the ex-
istence of a “master code” capable of saving or destroying the world.
They also meet a cat, another game character that will become May’s
“companion” and help her through her journey. Building on a familiar
story template in a learning environment may bring an interesting
context in which learners can solve their problems [9, 16].

Figure 1: Exploration phase: The main Character interacting
with the Oracle

3.3 Structure
The game is structured in two phases: the exploration phase: The
player is free to walk around the world, interact with objects, talk
to NPCs and collect items (see Figure 1), and the coding phase:
Some parts of the levels are unreachable due to several factors,
such as objects blocking the path, a broken path, a locked door,
etc. At certain points in the level, the player can use their coding
device, depicted as red blocks shown in Figure 1 and 2, to pull up a
programming interface. Using the interface, they can type in their
code to manipulate the objects and continue crossing the level. This
structure has been chosen to embed programming within gameplay,
rather than have it as a series of tasks to complete one after another.
As emphasized in P1, programming is the way that players advance,
discover new places and fix broken parts of the game world. The
game is divided in areas that teach specific goals as explained in P3.

Figure 2: Coding phase: Moving one block in the first level

3.4 Learning Goals
To create easy and relatable analogies, we are choosing to introduce
Object Oriented Programming (OOP) following Zhu and Zhou’s
methodology for teaching the paradigm starting from real world
observations [80]. Everything in the game world is presented as an
object and every object can be composed of smaller objects. These
objects will be introduced through observation and exploration. For
example, the Object from class “Block” is any block that a player
can interact within the game while Class “windBlock” is a child
class that adds certain specificities. Figure 3 shows some of the mov-
able objects in the game. Seeing the pieces of the world as objects
and seeing the whole game world as a multitude of programmable
objects interacting with each other helps presenting the program-
ming problems as “real life” situations which makes problem solving
more efficient [8]. Finally, this design follows Stein’s argument for
replacing “computation as calculation” with “computation as inter-
action” [59, 73].

Figure 3: Different types of movable objects in game (from left
to right: block, rotatable block, cat, windblock)

3.5 Progression
Currently, the game has 11 levels with different puzzles of vary-
ing complexity. In the first stages of the game, we teach basic in-
structions, sequence logic and loops using methods that are defined
within the context. Basic instructions are introduced by two methods:
object.MoveDirection(); where Direction can be Left, Right
Up and Down, and object.Rotate(“direction”);where in this
case the direction is used as a String argument introducing functions
with arguments as well as a new type. Sequence logic is introduced
through puzzles that require the player to input commands in a
certain order to win the level. Finally, we introduce for loops that
take two Integers as begin and end and repeat the commands inside
it multiple times. An example code in our programming language
would look like the following:

1 main() {
2 for (0 to 5) {
3 block1.MoveLeft();
4 block2.MoveDown();
5 }
6 }

For a successful execution, all code must be contained within the
main function, which is provided at the beginning of each level or
when players press “restart”. Our language uses OOP conventions
while reducing the verbosity to lower the barrier of syntax.

In each level, we introduce either a new programming construct
or a new way to apply a known construct. We are inspired by the
Evidence Centered Design presented in [71]. To enable the stealth

Educational Game Design: An Empirical Study of the Effects of Narrative FDG’18, August 7–10, 2018, Malmö, Sweden

assessment of our learning goals, we similarly break our levels
into “rule acquisition” and “rule application”. Table 1 depicts the
breakdown of our levels which, in turn, portrays the application of
P2.

level learning goal rule
level_0 Basic instruction (Move) acquisition

level_1_1 Basic instruction (Move) application
Sequencing acquisition

level_1_2 Basic instruction (Move) application
Sequencing application
Pressure plate and Key acquisition

level_1_3 Basic instruction (Move) application
Sequencing application
Stair formation and Key acquisition

level_1_4 Basic instruction (Move) application
Sequencing application
Block as a moving platform acquisition

level_2_1 Basic instruction (Move) application
WindBlock acquisition

level_2_2 Basic instruction (Move) application
Sequencing application
WindBlock application

level_2_3 Basic instruction (Rotate) acquisition
WindBlock application

level_3_1 Basic instruction (Rotate) application
Sequencing application

level_3_2 For loop acquisition
basic instruction (Move) application

level_3_3 For loop application
Basic instruction (Move) application
Pressure plate and Key application
Cat as programmable object acquisition

Table 1: List of levels and their corresponding learning objec-
tive

P6 of our design principles is implemented through debugging
which is introduced by an error handling mechanism that provides
a comprehensible feedback. The error messages are designed to be
clear, concise and helpful without giving away solutions. A player
can make two types of errors: syntax and logical. For syntax errors,
the message is displayed in the console. An example can be “Miss-
ing opening curly bracket { the for loop in line 5” or “the name
ObjectName and/or the command CommandName don’t match the
commands and objects available”. logical errors are presented in a
form of a sound cue and a reset of the puzzle to its initial layout.

4 EXPERIMENTS
4.1 Design
We prepared two versions of May’s Journey varied through the
presence or absence of predefined narrative defined by Lindley as
the in-game stories or histories revealed via simulated book or dialog

text [45]. The differences in the design of the two game conditions
(Rich Narrative RN vs Light Narrative LN) are described below. We
made sure that the experience of the game itself is not hampered
by the removal of narrative elements in the Light Narrative version.
The instructions on how to play the game and feedback about errors
remain unchanged in both versions and are communicated in the
same way through the programming interface.

Figure 4: The intro level of the game showing the hero May
asking the player for help

4.1.1 Intro Level. In the RN version, players start by encounter-
ing May in a computer desktop environment and are fully introduced
to the game’s story through text dialog. They are then asked to join
her game world to fix it and find her friend. Figure 4 shows part of
the story text elements. This scene is removed from the LN version.
Removing the opening scene removes the motivation component
for the player character and their role in the narrative. This part is
crucial since it situates the player’s possible motive.

4.1.2 Level 0. This is the introductory level where the player
types their first code (Figure 1). Before getting to the programming
part, they meet Myr, the oracle who will tell them they need to use
programming to rebuild the paths. She mentions that May’s task is
difficult, but she will be there to help later in the game. In the LN
version, the oracle does not appear.

4.1.3 Level 1_4. In both versions, players will find a pressure
plate to open a door leading to a manuscript with a secret code.
However, only in the RN version, players will discover an old book
revealing the existence of a “master code” capable of destroying or
saving the world. This information foreshadows a bigger event and
builds curiosity in the players’ minds increasing their engagement.

4.1.4 Secret Level. This level is only accessible if the player
has completed the following steps: activate the pressure plate in
level 1_4, get the manuscript in level 1_1, and type the secret code
into the right coding button in level 1_3. In the RN version, they
will find a statue of the Micro hero, while in the LN version, they
only find gems to collect. Revealing a possible antagonist should
enhance players’ curiosity and build assumptions about the game
world history.

4.1.5 Level 3_1. In this level, the player encounters the cat
companion. In the RN version, there is a dialog in which May and

FDG’18, August 7–10, 2018, Malmö, Sweden Chaima Jemmali, Sara Bunian, Andrea Mambretti, and Magy Seif El-Nasr

the cat mutually agree to help each other. In the LN version, there
is no dialog but only a message saying “cat has joined your party”.
Since the cat can be used as a programmable object, we preferred to
keep it to prevent inconsistencies in the gameplay between the two
versions. Minimizing the dialog between the two characters reduces
the importance of their relationship and future friendship. In the LN,
the cat becomes simply a "tool" rather than a companion.

4.1.6 Level 3_2. In the RN version, the players can see an
active Micro appearing and disappearing in the distance. The Micro
does not show up in the LN. This scene doesn’t confront the player
with the antagonist but builds their expectation.

4.2 Procedure
For this study, we collected data from 87 participants recruited
through Amazon Mechanical turk (MTurk) and limited it to turk-
ers who are located in the United States to limit language issues.
MTurk was chosen for recruitment because of its growing popularity
amongst researchers looking for a wide range of individuals to gen-
eralize their findings [6, 41, 42]. Moreover, we noticed that turkers
constitute a good base of users who may not have programming
experience.

Participants were asked to complete two questionnaires that in-
cluded both quantitative and qualitative data. The first one is the
pre-game survey, which consisted of fifteen questions to identify
user’s demographics, game preferences, and prior experience and
knowledge of programming. After taking the first questionnaire, par-
ticipants were asked to play the game for at least one hour or until
completion. The game is estimated to take around 45 minutes to
finish for a non-programmer. For each participant, we collect game
logs of the player actions performed during the gameplay, including
interactions with NPCs, objects collected, codes written, and error
details. Immediately after completing the game, participants were
asked to answer a post-game questionnaire that consisted of twelve
questions to determine user engagement and the game’s impact
on users’ programming experience. To measure immersion, flow,
competence, positive and negative affect of players, we used the
validated Game Experience Questionnaire (GEQ) [29]. To measure
participants’ opinion about programming, we added programming
perception questions to both the pre- and post-game questionnaires
that are based on a 5-point Likert scale (1: Definitely Not, 5: Defi-
nitely Yes). Participants are asked if they think programming is hard,
useful or boring. Participants who completed the post-game survey
(they either finished the game or spent at least an hour playing) were
compensated with $10.

We first preprocessed and cleaned the data to remove the ones
with incomplete or incoherent records. As a result, 14 out of the 87
participants were dismissed. Thus, the experiment was conducted
on 73 participants who were randomly assigned to two groups: RN
and LN. Table 2 shows the participants’ breakdown.

Total (73)
Light Narrative (34) Rich Narrative (39)

Female (12) Male (22) Female (18) Male (21)
Table 2: Participants distribution

5 RESULTS
To understand participants’ perception about the game and identify
potential differences between them, we examined four primary as-
pects using our questionnaire data: engagement experience, game
elements, participants’ interest in future play, and their interest in
programming.

5.1 Engagement Experience
We analyzed participants’ responses to the in-game GEQ questions
that were answered based on a five-point Likert scale with (4: Ex-
tremely, 0: not at all). The questions were used to target the overall
experience of the game, rather than the programming experience. A
Mann-Whitney U-test showed that there are significant differences
between the RN and LN groups for some of these measures: “I
felt bored” (p < 0.001), and “I was interested in game’s story” (p <
0.001). In analyzing the boredom aspect, we found that 59% of the
participants in the RN version extremely agree that they did not feel
bored during the gameplay compared to 47% of participants in the
LN version of the game. Additionally, 30.8% of the RN participants
were extremely interested in the game’s story versus 5.9% of the LN
participants. Although weakly significant, the answers “I forgot ev-
erything around me” (p = 0.081) and “I felt completely absorbed” (p
= 0.11) correlate with participants’ interest in the story as shown in
the Figure 6. This indicates that RN may have increased immersion.

Figure 5: Mean of 5-Likert scale rating on game elements

5.2 Game Elements
To provide insight on how users perceived different elements of
the game design, we analyzed their responses to the question “Rate
how much you liked these items from 1 to 5 (1 being I did not
like it and 5 being I liked it)”. These elements include: characters,
game mechanics, coding interface, story, environment, graphics and
audio. As shown in Figure 5, overall, the RN participants had a
higher average rating for the design elements than LN participants.
A Mann-Whitney U-test showed that there are significant differences
between RN and LN for some of these measures: Story (p < 0.001),
Environment (p = 0.047), Characters (p = 0.046), and Graphics (p <
0.001). By looking at participant’s direct feedback to the question
“What did you like most of the game?”, one reported “The story and
strategy mixed with coding”. Another participant said, “It looked like
fun-good graphics” while another mentioned "The cute character".
This reinforced the findings of participants’ positive response to
most of the game elements.

Educational Game Design: An Empirical Study of the Effects of Narrative FDG’18, August 7–10, 2018, Malmö, Sweden

Figure 6: Mean Likert rating of in-game GEQ

5.3 Participants’ interest in future play
Based on the analysis of the question “Would you Like to play more
of the game?”, which is a five-point Likert scale (5: Definitely Yes.
1: Definitely No), there are significant differences between RN and
LN participants (p = 0.037). We found that 66.7% (Def. Yes: 35.9%,
Prob. Yes: 30.8%) of the RN participants had a stronger interest in
playing more of the game compared to 47% (Def. Yes: 17.6%, Prob.
Yes: 29.4%) of the LN participants. Some participants’ responses
support these findings. One said “I really wish to keep playing”.
Another one reported “I wish the game lasted longer”. One potential
explanation is that a compelling narrative can help retain players and
keep them engaged with the learning subject.

5.4 Participants’ interest in programming
To evaluate the effectiveness of the game in piquing participants’
interests in programming, we examined the perception questions
in both the pre- and post-game questionnaires. The questions were
based on a five-point Likert scale (5: Definitely Yes. 1: Definitely
No). The Mann-Whitney U-test showed that there is significant
difference in the question “After playing the game, do you think pro-
gramming is boring?” with (p = 0.016). By analyzing the data, we
found that 48.7% of the RN participants reported that they definitely
believe programming is not boring after playing the game compared
to 29.4% of the LN participants. To support this finding, we further
evaluated the difference between participants’ responses to the ques-
tions “do you think programming is boring?” and “After playing
the game, do you think programming is boring?” in the pre-and
post-survey respectively. Our goal is to identify if there is an effect
of gameplay on changing participants’ perception of programming.
We found that 48.7% of the RN participants lowered their scoring
scale (i.e. they think programming is less boring after playing the
game), compared to 35.3% of the LN participants. This indicates
that narrative can support student’s engagement in the learning task
and spur their interest towards programming education. For both

of the game versions, we couldn’t find any significant differences
between the pre- and post- responses of programming being either
hard or useful. The majority of participants in both group thought
programming became easier after playing the game.

Figure 7: Responses of participants with no/bad programming
experience to the question “Do you think the game can be an
effective way to learn programming?”

To investigate the effect of the game in easing the learning pro-
cess for individuals with no prior programming experience, we
filtered the data into two groups based on their response to the pre-
questionnaire question “How do you estimate your programming
experience?”. The first group contained 52 participants with no or
bad programming experience, in which 24 of them played the LN
version whereas 28 played the RN version. The other group was
composed of 21 individuals with medium or good programming
experience, 10 played the LN version versus 11 for the RN version.
Within the same group of participants with no or bad programming
experience, we analyzed their responses to the post-game question
of “Do you think this game can be an effective way to learn program-
ming?”. Results from Figure 7 show that 75% of the participants in

FDG’18, August 7–10, 2018, Malmö, Sweden Chaima Jemmali, Sara Bunian, Andrea Mambretti, and Magy Seif El-Nasr

Figure 8: Percentage of individuals with no/bad programming experience that correctly solved the puzzle on their 1st attempt

the RN version think the game is definitely effective to learn pro-
gramming versus 37.5% for the LN version. This demonstrates that
leveraging narrative within a game-based learning environment can
be an effective tool to teach programming education to individuals
with no prior experience. This is supported by the direct feedback
of the participants. One participant reported that “I feel like I’m a
better coder than I was an hour ago.” Another one stated “the game
taught coding in an easy to understand manner.”

Figure 9: Distribution of the different types of coding errors

5.5 Game Data
To gain better insight into the effect of the game on engagement
and programming learning, we analyzed the behavioral data col-
lected from the game logs. Results showed that 69.2% of the RN
participants reached the secret level compared to 58.8% of the LN
participants. This demonstrates that the rich narrative encouraged
participants to engage in extra activities within the game. Also,
56.4% of the RN participants finished the game versus 50% of the
LN participants.

As mentioned earlier, the game differentiates between error types
and address them in order with a priority for syntax ones. This
means that if a code contains both logical and syntax errors, it will
be counted as the latter. In addition, each successive set of errors
with exactly the same input code are counted as one utterance, and
presented as a unique error. To generalize the measurements across
participants, we normalized the number of errors over the total
coding time spent. As can be seen in Figure 9, across all the error
types logged in the game, RN participants had a lower average than
LN participants. However, due to a high variance in the number of
errors, we could not find significant results across the error types.

To further investigate the effect of the game on programming,
we wanted to identify the percentage of participants who correctly
solved the coding puzzles on their first attempt. We compared be-
tween the two groups of participants having no/bad programming
experience and medium/good programming experience. Figure 8
shows the percentage of players with no programming experience
who correctly solved the puzzle on their 1st attempt. Major differ-
ences can be clearly perceived among the game levels between the
players in the two versions of narratives. For instance, in level 2_1,
82.2% of RN participants completed the puzzle correctly compared
to 62.2% LN participants. Also, in the RN condition, 14.3% and
10.7% completed levels 1_4 and 3_2 respectively whereas no player
has completed these levels correctly on their first attempt in the LN
condition. These are typically levels where players need to apply the
learned command in a new challenge. However, the Mann-Whitney
U-test did not report any significance, except for level 3_1 (p =
0.026) which is the level where players meet the cat. This indicates
that players in the Rich Narrative version were potentially more
focused and more eager to find and save the trapped cat. As for the
other group of good programming experience, we could not perceive
any differences between the two game conditions.

Educational Game Design: An Empirical Study of the Effects of Narrative FDG’18, August 7–10, 2018, Malmö, Sweden

6 DISCUSSION AND LIMITATIONS
The results of our evaluations suggest that adding rich narrative
elements to a game that teaches programming can actually improve
engagement and therefore result in increased learning. In a larger
context, this demonstrates the benefits of embedding narrative el-
ements, specifically characters, dialog, and foreshadowing, to an
educational context. We believe that the design principles we fol-
lowed can be applied to other educational games. Narrative games
offer different types of interactions and it is important to leverage
this advantage and fully merge game mechanics and learning content.
Specifically, P1 and P4 are the major differences between our game
design and previous work design which may explain the different
performance results.

In fact, when asked about what did they like most about the game,
54% of the participants in both conditions mentioned coding and
learning, while 21% indicated the puzzles and the challenge. These
results imply that the game was liked because of its educational value.
The additional features such as the graphics, audio, environment and
narrative elements can be seen as means to support the learning
aspect.

One of the limitations is that the game is short, including only a
few levels and therefore does not cover many essential programming
aspects, such as variables, boolean logic and arrays. A study of a
longer game including these concepts along with introduction to
abstraction and classes is needed to effectively assess the learning
benefits. Another limitation is the relatively small number of partici-
pants, which prevents the generalization of some of our findings.

7 CONCLUSION AND FUTURE WORK
We presented May’s Journey, an educational puzzle game that teaches
programming whose design follows principles inspired from theo-
ries related to fun and engagement from games research. The main
feature is that the core mechanic of the game serves our educational
goal. The game’s progression is structured to make sure players
discover all the materials needed to develop essential skills while
allowing exploration and extra levels to push their skills further. The
narrative elements, because of their intrinsic nature, succeeded at
engaging our participants and improved their performance in the
game.

In future work, we plan to expand the content of the game to
include other essential programming concepts. Furthermore, we in-
tend to investigate potential adaptive mechanisms to help learners
with higher difficulties. Finally, we think that running studies with
middle and high school students will be an important step in assess-
ing the educational value of the game. The experiments will involve
transference tests to fully assess the learning outcomes.

8 ACKNOWLEDGEMENTS
This research is supported by NSF AISL (Advancing Informal
STEM Learning) Award Id : 1810972

REFERENCES
[1] Deanne M Adams, Richard E Mayer, Andrew MacNamara, Alan Koenig, and

Richard Wainess. 2012. Narrative games for learning: Testing the discovery and
narrative hypotheses. Journal of educational psychology 104, 1 (2012), 235.

[2] Clark Aldrich. 2005. Learning by doing: A comprehensive guide to simulations,
computer games, and pedagogy in e-learning and other educational experiences.

John Wiley & Sons.
[3] Alan Amory. 2007. Game object model version II: a theoretical framework for ed-

ucational game development. Educational Technology Research and Development
55, 1 (2007), 51–77.

[4] Alan Amory, Kevin Naicker, Jacky Vincent, and Claudia Adams. 1999. The use of
computer games as an educational tool: identification of appropriate game types
and game elements. British Journal of Educational Technology 30, 4 (1999),
311–321.

[5] Ian Arawjo, Cheng-Yao Wang, Andrew C Myers, Erik Andersen, and François
Guimbretière. 2017. Teaching Programming with Gamified Semantics. In Pro-
ceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
ACM, 4911–4923.

[6] Michael B Armstrong and Richard N Landers. 2017. An Evaluation of Gamified
Training: Using Narrative to Improve Reactions and Learning. Simulation &
Gaming (2017), 1046878117703749.

[7] Richard Blunt. 2007. Does game-based learning work? Results from three re-
cent studies. In Proceedings of the Interservice/Industry Training, Simulation, &
Education Conference. 945–955.

[8] David Boud and Grahame Feletti. 1997. The challenge of problem-based learning.
Psychology Press.

[9] Joseph Campbell. 2008. The hero with a thousand faces. Vol. 17. New World
Library.

[10] Walter Cazzola and Diego Mathias Olivares. 2016. Gradually learning program-
ming supported by a growable programming language. IEEE Transactions on
Emerging Topics in Computing 4, 3 (2016), 404–415.

[11] Douglas B Clark, Emily E Tanner-Smith, and Stephen S Killingsworth. 2016.
Digital games, design, and learning: A systematic review and meta-analysis.
Review of educational research 86, 1 (2016), 79–122.

[12] Brianno D Coller and Michael J Scott. 2009. Effectiveness of using a video game
to teach a course in mechanical engineering. Computers & Education 53, 3 (2009),
900–912.

[13] Stephen Cooper, Wanda Dann, and Randy Pausch. 2000. Alice: a 3-D tool for
introductory programming concepts. In Journal of Computing Sciences in Colleges,
Vol. 15. Consortium for Computing Sciences in Colleges, 107–116.

[14] Edward L Deci and Richard M Ryan. 1985. The general causality orientations
scale: Self-determination in personality. Journal of research in personality 19, 2
(1985), 109–134.

[15] Giuliana Dettori and Ana Paiva. 2009. Narrative learning in technology-enhanced
environments. Technology-Enhanced Learning (2009), 55–69.

[16] Michele D Dickey. 2006. Game design narrative for learning: Appropriating ad-
venture game design narrative devices and techniques for the design of interactive
learning environments. Educational Technology Research and Development 54, 3
(2006), 245–263.

[17] Michele D Dickey. 2011. Murder on Grimm Isle: The impact of game narrative
design in an educational game-based learning environment. British Journal of
Educational Technology 42, 3 (2011), 456–469.

[18] Alejandro Echeverría, Enrique Barrios, Miguel Nussbaum, Matías Améstica, and
Sandra Leclerc. 2012. The atomic intrinsic integration approach: A structured
methodology for the design of games for the conceptual understanding of physics.
Computers & Education 59, 2 (2012), 806–816.

[19] Sarah Esper, Stephen R Foster, William G Griswold, Carlos Herrera, and Wyatt
Snyder. 2014. CodeSpells: bridging educational language features with industry-
standard languages. In Proceedings of the 14th Koli Calling International Confer-
ence on Computing Education Research. ACM, 05–14.

[20] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi,
Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. 2015. The racket manifesto.
In LIPIcs-Leibniz International Proceedings in Informatics, Vol. 32. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[21] N Fraser et al. 2013. Blockly: A visual programming editor. URL: https://code.
google. com/p/blockly (2013).

[22] Varvara Garneli, Michail Giannakos, and Konstantinos Chorianopoulos. 2017.
Serious games as a malleable learning medium: The effects of narrative, game-
play, and making on studentsâĂŹ performance and attitudes. British Journal of
Educational Technology 48, 3 (2017), 842–859.

[23] James Paul Gee. 2003. What video games have to teach us about learning and
literacy. Computers in Entertainment (CIE) 1, 1 (2003), 20–20.

[24] Shuchi Grover and Satabdi Basu. 2017. Measuring student learning in introductory
block-based programming: Examining misconceptions of loops, variables, and
boolean logic. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education. ACM, 267–272.

[25] Mark Guzdial. 2004. Programming environments for novices. Computer science
education research 2004 (2004), 127–154.

[26] Nicole Hallinen, Erin Walker, Ruth Wylie, Amy Ogan, and Christopher Jones.
2009. I was playing when I learned: A narrative game for French aspectual
distinctions. In Proceedings of the Workshop on Intelligent Educational Games
at the 14th International Conference on Artificial Intelligence in Education. 117–
120.

FDG’18, August 7–10, 2018, Malmö, Sweden Chaima Jemmali, Sara Bunian, Andrea Mambretti, and Magy Seif El-Nasr

[27] Kyle J Harms, Noah Rowlett, and Caitlin Kelleher. 2015. Enabling independent
learning of programming concepts through programming completion puzzles.
In Visual Languages and Human-Centric Computing (VL/HCC), 2015 IEEE
Symposium on. IEEE, 271–279.

[28] Leslie J Hinyard and Matthew W Kreuter. 2007. Using narrative communication
as a tool for health behavior change: a conceptual, theoretical, and empirical
overview. Health Education & Behavior 34, 5 (2007), 777–792.

[29] WA IJsselsteijn, YAW De Kort, and Karolien Poels. 2008. The game experience
questionnaire. Manuscript in preparation (2008).

[30] Henry Jenkins. 2004. Game design as narrative. Computer 44 (2004), 53.
[31] Jesper Juul. 2001. Games telling stories? A brief note on games and narratives.

Game studies 1, 1 (2001), 1–12.
[32] Caitlin Kelleher and Randy Pausch. 2005. Lowering the barriers to programming:

A taxonomy of programming environments and languages for novice programmers.
ACM Computing Surveys (CSUR) 37, 2 (2005), 83–137.

[33] Caitlin Kelleher, Randy Pausch, and Sara Kiesler. 2007. Storytelling alice moti-
vates middle school girls to learn computer programming. In Proceedings of the
SIGCHI conference on Human factors in computing systems. ACM, 1455–1464.

[34] Kristian Kiili. 2005. Digital game-based learning: Towards an experiential gaming
model. The Internet and higher education 8, 1 (2005), 13–24.

[35] Andrew J Ko, Brad A Myers, and Htet Htet Aung. 2004. Six learning barriers
in end-user programming systems. In Visual Languages and Human Centric
Computing, 2004 IEEE Symposium on. IEEE, 199–206.

[36] David A Kolb. 2014. Experiential learning: Experience as the source of learning
and development. FT press.

[37] Michael Kölling. 2010. The greenfoot programming environment. ACM Transac-
tions on Computing Education (TOCE) 10, 4 (2010), 14.

[38] Raph Koster. 2013. Theory of fun for game design. " O’Reilly Media, Inc.".
[39] D Midian Kurland, Catherine A Clement, Ronald Mawby, and Roy D Pea. 1987.

Mapping the cognitive demands of learning to program. In Mirrors of Minds:
Patterns of experience in educational computing. Ablex Publishing Corp., 103–
127.

[40] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A study of the
difficulties of novice programmers. In Acm Sigcse Bulletin, Vol. 37. ACM, 14–18.

[41] Richard N Landers and Tara S Behrend. 2015. An inconvenient truth: Arbitrary
distinctions between organizational, Mechanical Turk, and other convenience
samples. Industrial and Organizational Psychology 8, 2 (2015), 142–164.

[42] Richard N Landers and Rachel C Callan. 2014. Validation of the beneficial and
harmful work-related social media behavioral taxonomies: development of the
work-related social media questionnaire. Social Science Computer Review 32, 5
(2014), 628–646.

[43] Michael J Lee, Faezeh Bahmani, Irwin Kwan, Jilian LaFerte, Polina Charters,
Amber Horvath, Fanny Luor, Jill Cao, Catherine Law, Michael Beswetherick,
et al. 2014. Principles of a debugging-first puzzle game for computing education.
In Visual Languages and Human-Centric Computing (VL/HCC), 2014 IEEE
Symposium on. IEEE, 57–64.

[44] Cher Ping Lim. 2008. Global citizenship education, school curriculum and games:
Learning Mathematics, English and Science as a global citizen. Computers &
Education 51, 3 (2008), 1073–1093.

[45] Craig A Lindley. 2005. Story and narrative structures in computer games. Bushoff,
Brunhild. ed (2005).

[46] Paul A Luker. 1989. Never mind the language, what about the paradigm?. In ACM
SIGCSE Bulletin, Vol. 21. ACM, 252–256.

[47] Paul A Luker. 1994. There’s more to OOP than syntax!. In ACM SIGCSE Bulletin,
Vol. 26. ACM, 56–60.

[48] Thomas W Malone. 1980. What makes things fun to learn? Heuristics for design-
ing instructional computer games. In Proceedings of the 3rd ACM SIGSMALL
symposium and the first SIGPC symposium on Small systems. ACM, 162–169.

[49] Thomas W Malone. 1981. Toward a theory of intrinsically motivating instruction.
Cognitive science 5, 4 (1981), 333–369.

[50] Thomas W Malone and Mark R Lepper. 1987. Making learning fun: A taxonomy
of intrinsic motivations for learning. Aptitude, learning, and instruction 3, 1987
(1987), 223–253.

[51] John H Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie Rusk.
2008. Programming by choice: urban youth learning programming with scratch.
Vol. 40. ACM.

[52] Rosa Mikeal Martey, Adrienne Shaw, Jennifer Stromer-Galley, Kate Kenski, Ben-
jamin Clegg, James Folkestad, Tobi Saulnier, and Tomek Strzalkowski. 2017.
Testing the Power of Game Lessons: The Effects of Art Style and Narrative Com-
plexity on Reducing Cognitive Bias. International Journal of Communication 11
(2017), 22.

[53] Rosa Mikeal Martey, Adrienne Shaw, Jennifer Stromer-Galley, Kate Kenski, Ben-
jamin A Clegg, James E Folkestad, Emilie T Saulnier, and Tomek Strzalkowski.
2014. Testing the Power of Game Lessons: The Effects of Art and Narrative on
Reducing Cognitive Biases.. In DiGRA.

[54] Richard E Mayer. 1992. Teaching for transfer of problem-solving skills to com-
puter programming. In Computer-based learning environments and problem
solving. Springer, 193–206.

[55] Jane McGonigal. 2011. Reality is broken: Why games make us better and how
they can change the world. Penguin.

[56] Scott McQuiggan, Jonathan Rowe, Sunyoung Lee, and James Lester. 2008. Story-
based learning: The impact of narrative on learning experiences and outcomes. In
Intelligent tutoring systems. Springer, 530–539.

[57] Roy D Pea. 1987. Logo programming and problem solving. (1987).
[58] Roy D Pea and D Midian Kurland. 1984. On the cognitive effects of learning

computer programming. New ideas in psychology 2, 2 (1984), 137–168.
[59] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams,

Jens Bennedsen, Marie Devlin, and James Paterson. 2007. A survey of literature
on the teaching of introductory programming. ACM SIGCSE Bulletin 39, 4 (2007),
204–223.

[60] Eugene F Provenzo Jr. 1991. Video kids: Making sense of Nintendo. Harvard
University Press.

[61] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11
(2009), 60–67.

[62] Lloyd P Rieber. 1996. Seriously considering play: Designing interactive learning
environments based on the blending of microworlds, simulations, and games.
Educational technology research and development 44, 2 (1996), 43–58.

[63] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
teaching programming: A review and discussion. Computer science education 13,
2 (2003), 137–172.

[64] Ralf Romeike. 2008. What’s my challenge? The forgotten part of problem solving
in computer science education. Informatics Education-Supporting Computational
Thinking (2008), 122–133.

[65] Jonathan P Rowe, Scott W McQuiggan, Jennifer L Robison, and James C Lester.
2009. Off-Task Behavior in Narrative-Centered Learning Environments.. In AIED.
99–106.

[66] Jonathan P Rowe, Lucy R Shores, Bradford W Mott, and James C Lester. 2010.
Integrating learning and engagement in narrative-centered learning environments.
In International Conference on Intelligent Tutoring Systems. Springer, 166–177.

[67] Jonathan P Rowe, Lucy R Shores, Bradford W Mott, and James C Lester. 2011.
Integrating learning, problem solving, and engagement in narrative-centered learn-
ing environments. International Journal of Artificial Intelligence in Education 21,
1-2 (2011), 115–133.

[68] Jennifer L Sabourin and James C Lester. 2014. Affect and engagement in Game-
BasedLearning environments. IEEE Transactions on Affective Computing 5, 1
(2014), 45–56.

[69] Mara Saeli, Jacob Perrenet, Wim MG Jochems, and Bert Zwaneveld. 2011. Teach-
ing programming in secondary school: a pedagogical content knowledge perspec-
tive. Informatics in Education 10, 1 (2011).

[70] Katie Salen and Eric Zimmerman. 2004. Rules of play: Game design fundamentals.
MIT press.

[71] Valerie J Shute, Lubin Wang, Samuel Greiff, Weinan Zhao, and Gregory Moore.
2016. Measuring problem solving skills via stealth assessment in an engaging
video game. Computers in Human Behavior 63 (2016), 106–117.

[72] Kurt Squire and Sasha Barab. 2004. Replaying history: Engaging urban under-
served students in learning world history through computer simulation games. In
Proceedings of the 6th international conference on Learning sciences. Interna-
tional Society of the Learning Sciences, 505–512.

[73] Lynn Andrea Stein. 1998. What we’ve swept under the rug: Radically rethinking
CS1. Computer Science Education 8, 2 (1998), 118–129.

[74] Peter Van Roy, Joe Armstrong, Matthew Flatt, and Boris Magnusson. 2003. The
role of language paradigms in teaching programming. In ACM SIGCSE Bulletin,
Vol. 35. ACM, 269–270.

[75] Arto Vihavainen, Matti Paksula, and Matti Luukkainen. 2011. Extreme appren-
ticeship method in teaching programming for beginners. In Proceedings of the
42nd ACM technical symposium on Computer science education. ACM, 93–98.

[76] David Weintrop and Uri Wilensky. 2015. To block or not to block, that is the
question: students’ perceptions of blocks-based programming. In Proceedings
of the 14th International Conference on Interaction Design and Children. ACM,
199–208.

[77] Wee Ling Wong, Cuihua Shen, Luciano Nocera, Eduardo Carriazo, Fei Tang,
Shiyamvar Bugga, Harishkumar Narayanan, Hua Wang, and Ute Ritterfeld. 2007.
Serious video game effectiveness. In Proceedings of the international conference
on Advances in computer entertainment technology. ACM, 49–55.

[78] Diana F Wood. 2003. ABC of learning and teaching in medicine: Problem based
learning. BMJ: British Medical Journal 326, 7384 (2003), 328.

[79] Pieter Wouters, Herre Van Oostendorp, Rudy Boonekamp, and Erik Van der Spek.
2011. The role of Game Discourse Analysis and curiosity in creating engaging
and effective serious games by implementing a back story and foreshadowing.
Interacting with Computers 23, 4 (2011), 329–336.

[80] Haibin Zhu and MengChu Zhou. 2003. Methodology first and language second:
A way to teach object-oriented programming. In Companion of the 18th annual
ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications. ACM, 140–147.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Teaching Programming
	2.2 Effects of narratives

	3 Design
	3.1 Design Principles
	3.2 Narrative
	3.3 Structure
	3.4 Learning Goals
	3.5 Progression

	4 Experiments
	4.1 Design
	4.2 Procedure

	5 Results
	5.1 Engagement Experience
	5.2 Game Elements
	5.3 Participants' interest in future play
	5.4 Participants' interest in programming
	5.5 Game Data

	6 discussion and limitations
	7 Conclusion and future work
	8 Acknowledgements
	References

